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APPLICATION OF THE FINK IDENTITY TO

JENSEN-TYPE INEQUALITIES FOR HIGHER ORDER

CONVEX FUNCTIONS

Marija Bo²njak, Mario Krni¢∗ and Josip Pe£ari¢

The focus of this paper is the application of the Fink identity in obtaining
Jensen-type inequalities for higher order convex functions. In addition to
the basic form, we establish superadditivity and monotonicity relations that
correspond to the Jensen inequality in this setting. We also obtain the corre-
sponding Lah-Ribari£ inequality. The obtained results are valid for functions
of even degree of convexity. With this method, we derive some new bounds
for the di�erences of power means, as well as some new Hölder-type inequal-
ities.

1. INTRODUCTION

At the very end of the twentieth century, Dragomir et al. [4], introduced the
Jensen functional as the di�erence between the right-hand side and the left-hand
side of the Jensen inequality, i.e.

(1) Jm(f,x,p) =

m∑
i=1

pif(xi)− Pmf

(
1

Pm

m∑
i=1

pixi

)
,

where f : I ⊂ R → R is a convex function, x = (x1, x2, . . . , xm) ⊂ Im, p =
(p1, p2, . . . , pm) ⊂ Rm+ and Pm =

∑m
i=1 pi > 0. Clearly, with the above assump-

tions, Jm(f,x,p) is non-negative. However, Dragomir et al. [4], noticed another
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important property of the Jensen functional, that is, the superadditivity. More
precisely, they established the relation

(2) Jm(f,x,p+ q) ≥ Jm(f,x,p) + Jm(f,x,q),

where p,q ⊂ Rm+ . At that time, it wasn't yet quite obvious that this relation
would become the starting point in establishing re�nements of numerous inequali-
ties closely related to the Jensen inequality. Namely, one of the trivial consequences
of superadditivity is the so called monotonicity of the Jensen functional, i.e.

(3) Jm(f,x,p) ≥ Jm(f,x,q) ≥ 0,

whenever p ≥ q, i.e. pi ≥ qi, i = 1, 2, . . . ,m (see also [11], p.717).
Some ten years ago, Krni¢ et al. [9], noticed that relation (3) provides mutual

bounds for functional (1) expressed in terms of the adjoint non-weighted functional.
Namely, with the above order between n-tuples, every n-tuple can be mutually
bounded by constant n-tuples, whereby we take the minimum coordinate for the
lower bound and the maximum coordinate for the upper bound. Consequently,
Krni¢ et al. [9], established the following bounds for the Jensen functional

(4) mpmaxIm(f,x) ≥ Jm(f,x,p) ≥ mpminIm(f,x),

where pmin = min1≤i≤m pi, pmax = max1≤i≤m pi and

Im(f,x) =

∑m
i=1 f(xi)

m
− f

(∑m
i=1 xi
m

)
.

Obviously, the lower bound in (4) provides the re�nement, while the upper one
yields the reverse of the Jensen inequality. Based on this property of Jm(f,x,p),
numerous improvements of some important inequalities (such as inequalities of
Young and Hölder, means inequalities etc.) have been established (for more de-
tails, see [8, 9] and the references cited therein). Moreover, for a comprehensive
inspection of the classical and new results in connection to the Jensen inequality,
the interested reader is referred to monographs [7, 11, 12] and the references cited
therein.

Nowadays, a lot of attention is paid to Jensen-type inequalities related to some
other variants of convexity such as the higher-order convexity, operator convexity
etc. In this paper, we deal with Jensen-type inequalities in companion with the
higher order convexity. Recall that an n-convex function is de�ned via the n-th
order divided di�erence. The n-th order divided di�erence of a function f : [a, b] →
R at mutually distinct points t0, t1, ..., tn ∈ [a, b] is de�ned recursively by

f [ti] = f(ti), i = 0, ..., n,

f [t0, ..., tn] =
f [t1, ..., tn]− f [t0, ..., tn−1]

tn − t0
.

The above de�nition can be extended to cover the cases in which some or all
points coincide (see, e.g. [1, 12]). Therefore, a function f : [a, b] → R is said
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to be n-convex, n ≥ 0, if f [t0, ..., tn] ≥ 0 for all choices of n + 1 distinct points
t0, t1, ..., tn ∈ [a, b]. On the other hand, if f [t0, ..., tn] ≤ 0, f is said to be n-concave.
The higher order convexity is indeed an extension of the mere convexity, 2-convex
functions are just convex functions, 1-convex functions are increasing functions,
while 0-convex functions are non-negative functions. The most important and, at
the same time, the simplest characterization of the n-convexity asserts that if the
n-th order derivative f (n) exists, then the function f is n-convex if and only if
f (n) ≥ 0 (for more details, see [1, 12]).

The crucial role in establishing Jensen-type inequalities with respect to higher
order convexity is played by certain integral representations of n-times di�erentiable
functions. By using such transformations, the Jensen functional (1) takes a form
which is suitable to study in higher order convexity setting. Initial steps in this
direction have been made in [13], where the authors established several Jensen-
type inequalities by virtue of the Montgomery identity (see [11]). Moreover, in
our recent paper [2], we have extended results from [13] in view of superadditivity,
monotonicity and mutual boundedness of the Jensen functional.

The starting point in this paper is another integral representation of an n-
times di�erentiable function, the so called Fink identity. Let n ∈ N and let a, b ∈ R.
The Fink identity asserts that if the function f : [a, b] → R is such that f (n−1) is
absolutely continuous, then holds the identity

f(x) =
n

b− a

∫ b

a

f(t)dt+
1

b− a

n−1∑
k=1

Φka,b(x)

+
1

(n− 1)!(b− a)

∫ b

a

Rn(x, s)f
(n)(s)ds,

(5)

where

(6) Φka,b(x) =
n− k

k!

[
f (k−1)(b)(x− b)k − f (k−1)(a)(x− a)k

]
and

Rn(x, s) =

{
(x− s)n−1(s− a), a ≤ s ≤ x ≤ b
(x− s)n−1(s− b), a ≤ x < s ≤ b.

For more details about the Fink identity, the reader is referred to [5].
Some basic Jensen-type inequalities for higher convex functions via the Fink

identity have been recently established in [3], which will be discussed in the next
section. Similarly to our recent paper [2], the main goal of the present article is
to extend the results from [3], taking into account the discussed properties of the
Jensen functional.

This paper consists of �ve sections. After the Introduction, in Section 2 we
discuss and also give slight extensions of discrete Jensen-type inequalities derived
in [3]. A special attention is paid to Jensen-type inequalities involving functions
with even degree of convexity. In particular, we derive the corresponding version of
the Lah-Ribari£ inequality. In addition, we also show that in the case of the mere
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convexity, the obtained results coincide with already known Jensen-type inequali-
ties given in this Introduction. Further, in Section 3 we derive superadditivity and
monotonicity relations for the Jensen inequality with respect to the higher-order
convexity. Namely, we establish Jensen-type inequalities for n-convex functions (n
even) that correspond to relations (2), (3) and (4). Similarly to [3], the key idea
of proving our results is a transformation of the Jensen functional via the Fink
identity. In this way, we get a form of the functional that is suitable to study
in described setting. The established results hold for functions of even degree of
convexity since only in this case we are able to determine the sign of the integral
appearing in transformed relations. We have already mentioned that in the case
of n = 2 the obtained results coincide with the classical Jensen-type inequalities.
Generally speaking, we are not able to determine the level of precision of the ob-
tained inequalities, in some cases they are more accurate than the classical Jensen
inequality, but they can also be weaker. As an application, in Section 4 we obtain
mutual bounds for the di�erences of power means which can represent improve-
ment of the monotonicity property of means in some cases. Finally, in Section 5
we derive several new Hölder-type inequalities based on the method developed in
this paper.

2. ANOTHER INSIGHT INTO THE BASIC JENSEN-TYPE
INEQUALITIES OBTAINED VIA THE FINK IDENTITY

The main objective of this section is a more detailed discussion and analysis
of some results established by Butt et al. in their recent paper [3]. A key step in
this approach is a transformation of the Jensen functional using the Fink identity
(5). The following transformation of the Jensen functional has been derived in [3],
however, we give it here in a form that will be more convenient in our future study.
Moreover, we also give the corresponding proof since it has been omitted in [3] and
since it will be important in our further analysis.

Theorem 1 (see also [3]). Let f : [a, b] → R be such that f (n−1) is absolutely

continuous, let x = (x1, x2, . . . , xm) ∈ [a, b]m and let p = (p1, p2, . . . , pm) ∈ Rm+ .

Then holds the identity

Jm(f,x,p) =
1

b− a

n−1∑
k=1

(
m∑
i=1

piΦ
k
a,b(xi)− PmΦka,b(xPm

)

)

+
1

(n− 1)!(b− a)

∫ b

a

(
m∑
i=1

piRn(xi, s)− PmRn(xPm
, s)

)
f (n)(s)ds,

(7)

where Pm =
∑m
i=1 pi, xPm

= 1
Pm

∑m
i=1 pixi, and where Φka,b(·) is de�ned by (6).

Proof. Substituting xi, i = 1, 2, . . . ,m, in the Fink identity (5), multiplying the
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corresponding identity by pi and summing all identities, we have that

m∑
i=1

pif(xi) =
nPm
b− a

∫ b

a

f(t)dt+
1

b− a

n−1∑
k=1

(
m∑
i=1

piΦ
k
a,b(xi)

)

+
1

(n− 1)!(b− a)

∫ b

a

(
m∑
i=1

piRn(xi, s)

)
f (n)(s)ds,

(8)

after changing the order of summation. Similarly, putting xPm
= 1

Pm

∑m
i=1 pixi in

(5), we obtain the identity

Pmf(xPm
) =

nPm
b− a

∫ b

a

f(t)dt+
1

b− a

n−1∑
k=1

PmΦka,b(xPm
)

+
Pm

(n− 1)!(b− a)

∫ b

a

Rn(xPm , s)f
(n)(s)ds.

Hence, (7) follows by subtracting the previous two relations.

Remark 2. In [3], the authors have proved that the function Rn(·, s) is convex,
with respect to the �rst variable and for every �xed s, when n ≥ 4 is even integer.
Clearly, this follows by taking its second partial derivative (with respect to the �rst
variable):

∂2Rn
∂x2

(x, s) =

{
(n− 1)(n− 2)(x− s)n−3(s− a), a ≤ s ≤ x ≤ b,
(n− 1)(n− 2)(x− s)n−3(s− b), a ≤ x < s ≤ b.

However, if n = 2, then

R2(x, s) =

{
(x− s)(s− a), a ≤ s ≤ x ≤ b
(x− s)(s− b), a ≤ x < s ≤ b.

It should be noticed here that R2(·, s) is a piecewise linear function which is obvi-
ously convex on [a, b] for every �xed s ∈ [a, b]. In conclusion, Rn(·, s) is convex for
all positive even integers n.

Due to the previous remark, the integral on the right-hand side of identity (7)
is non-negative whenever the function f is n-convex, where n is non-negative even
integer. Of course, this fact provides a slightly extended Jensen-type inequality
which has been established in [3]. We give it here in a more suitable form.

Theorem 3 (see also [3]). Let n be positive even integer and let f : [a, b] → R be n-
convex function such that f (n−1) is absolutely continuous. If x = (x1, x2, . . . , xm) ∈
[a, b]m and p = (p1, p2, . . . , pm) ∈ Rm+ , then holds the inequality

(9) Jm(f,x,p) ≥ 1

b− a

n−1∑
k=1

(
m∑
i=1

piΦ
k
a,b(xi)− PmΦka,b(xPm

)

)
,

where Pm =
∑m
i=1 pi, xPm

= 1
Pm

∑m
i=1 pixi, and where Φka,b(·) is de�ned by (6).

Furthermore, if f is n-concave then the sign of inequality (9) is reversed.
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Let f be a function that is both n-convex and convex in a classical sense, for
example f(x) = xn, x ∈ [a, b], where n is even. Generally speaking, if the right-
hand side of inequality (9) is non-negative, then it represents the improvement of
the Jensen inequality (1). Otherwise, inequality (9) is weaker than the usual Jensen
inequality. However, in the case of n = 2, things become much clearer.

Remark 4. If n = 2, inequality (9) reduces to

(10) Jm(f,x,p) ≥ 1

b− a

(
m∑
i=1

piΦ
1
a,b(xi)− PmΦ1

a,b(xPm
)

)
,

where Φ1
a,b(x) = f(b)(x− b)− f(a)(x− a) is the linear function. Since the Jensen

inequality becomes equality in the case of linear function, the right-hand side of
(10) is equal to zero, which yields positivity of the Jensen functional. This fact can
also be derived in another way. Namely, if n = 2, identity (7) becomes

Jm(f,x,p) =
1

b− a

∫ b

a

(
m∑
i=1

piR2(xi, s)− PmR2(xPm , s)

)
f ′′(s)ds

=

m∑
i=1

piF (xi)− PmF (xPm
),

(11)

since
∑m
i=1 piΦ

1
a,b(xi)− PmΦ1

a,b(xPm
) = 0. Here, F stands for the function

F (x) =
1

b− a

∫ b

a

R2(x, s)f
′′(s)ds.

It is not hard to show that F is a convex function. Obviously, F is di�erentiable
and we have that

F ′(x) =
1

b− a

[∫ x

a

∂R2

∂x
(x, s)f ′′(s)ds+

∫ b

x

∂R2

∂x
(x, s)f ′′(s)ds

]

=
1

b− a

[∫ x

a

(s− a)f ′′(s)ds+

∫ b

x

(s− b)f ′′(s)ds

]
= f ′(x),

that is, F ′′(x) = f ′′(x). Hence, F is convex on [a, b], which again yields positivity of
the Jensen functional. In each case, the derived result is meaningful, so inequality
(9) can be regarded as an extension of the classical Jensen inequality.

Remark 5. Let's return to identity (11) once more. This formula represents in-
tegral form of the Jensen functional for twice di�erentiable functions. In fact, this
expression measures the di�erence between the right-hand side and left-hand side
of the Jensen inequality using an integral. That is why identity (11) can be un-
derstood as an improvement of the classical Jensen inequality. Moreover, applying
mutual bounds in (4) to the convex function R2(·, s), identity (11) again provides
usual bounds for the Jensen functional.
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Let us conclude this section with a short discussion about one of the most
interesting reverses of the Jensen inequality, the so called Lah-Ribari£ inequality.
The Lah-Ribari£ inequality asserts that if f : [a, b] → R is a convex function,
x = (x1, x2, . . . , xm) ⊆ [a, b]m, p = (p1, p2, . . . , pm) ⊂ Rm+ , then

(12)
1

Pm

m∑
i=1

pif(xi) ≤
b− xPm

b− a
f(a) +

xPm
− a

b− a
f(b),

where Pm =
∑m
i=1 pi and xPm = 1

Pm

∑m
i=1 pixi (for more details, see [10] and [12,

p. 98]).

Following the Jensen inequality equipped with the higher order convexity,
Butt et al. [3], also derived a version of the Lah-Ribari£ inequality that leans on
higher order convexity, by rewriting (12) as the di�erence between the left-hand
side and the right-hand side. On the other hand, it is much more natural to de�ne
the Lah-Ribari£ functional as the di�erence between the right-hand side and the
left-hand side of (12) multiplied by Pm:

(13) Lm(f,x,p) = Pm

(
b− xPm

b− a
f(a) +

xPm − a

b− a
f(b)

)
−

m∑
i=1

pif(xi).

Now, the main goal is to transform the above functional using the Fink identity.
More precisely, considering (5) with x = a and x = b, we arrive at the following
identity:

Pm

(
b− xPm

b− a
f(a) +

xPm
− a

b− a
f(b)

)
=

nPm
b− a

∫ b

a

f(t)dt+
Pm

(b− a)2

n−1∑
k=1

(
(b− xPm)Φka,b(a) + (xPm − a)Φka,b(b)

)
+

Pm
(n− 1)!(b− a)2

∫ b

a

((b− xPm
)Rn(a, s) + (xPm

− a)Rn(b, s)) f
(n)(s)ds.

Furthermore, subtracting (8) from the above identity, we obtain the following form
of the Lah-Ribari£ functional:

Lm(f,x,p)

=
1

b− a

n−1∑
k=1

(
Pm
b− a

(
(b− xPm)Φka,b(a) + (xPm − a)Φka,b(b)

)
−

m∑
i=1

piΦ
k
a,b(xi)

)

+
1

(n− 1)!(b− a)

(
Pm
b− a

∫ b

a

((b− xPm)Rn(a, s) + (xPm − a)Rn(b, s)) f
(n)(s)ds

−
∫ b

a

( m∑
i=1

piRn(xi, s)
)
f (n)(s)ds

)
.

(14)
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Let's note once again that in [3] functional (14) has the opposite sign. Now, follow-
ing the ideas as in Theorem 3, Butt et al. [3], established the Lah-Ribari£ inequality
for n-convex functions, where n is even integer such that n ≥ 4. However, taking
into account our Remark 2, the corresponding result can also be extended for the
case of n = 2.

Corollary 6 (see also [3]). Let n be positive even integer and let f : I → R be n-
convex function such that f (n−1) is absolutely continuous. Then holds the inequality

Lm(f,x,p)

≥ 1

b− a

n−1∑
k=1

(
Pm
b− a

(
(b− xPm

)Φka,b(a) + (xPm
− a)Φka,b(b)

)
−

m∑
i=1

piΦ
k
a,b(xi)

)
.

(15)

Proof. Since the function Rn(·, s) is convex on [a, b] for even n (see Remark 2), it
follows that

Pm

(
b− xPm

b− a
Rn(a, s) +

xPm
− a

b− a
Rn(b, s)

)
≥

m∑
i=1

piRn(xi, s),

by the Lah-Ribari£ inequality (12). Therefore, the integral on the right-hand side
of (14) is non-negative which implies (15).

Remark 7. It should be noticed here that if f is n-concave then the sign of
inequality (15) is reversed due to the fact that f (n)(s) ≤ 0, s ∈ [a, b], for n-concave
function.

3. SUPERADDITIVITY AND MONOTONICITY OF THE JENSEN
FUNCTIONAL IN COMPANION WITH THE HIGHER ORDER

CONVEXITY

The main objective of this section is to establish the corresponding superad-
ditivity and monotonicity relations of the Jensen functional for n-convex functions,
where n is even. Clearly, the key role will be played by identity (7), established via
the Fink identity. Our �rst result is an extension of (2), i.e. superadditivity form
of the Jensen functional in the described setting.

Theorem 8. Let n be positive even integer and let f : I → R be n-convex function

such that f (n−1) is absolutely continuous. Then holds the inequality

Jm(f,x,p+ q)

≥ Jm(f,x,p) + Jm(f,x,q)

+
1

b− a

n−1∑
k=1

(
PmΦka,b(xPm) +QmΦka,b(xQm)− (Pm +Qm)Φka,b(xPm+Qm)

)
,

(16)
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where x ∈ [a, b]m ⊂ Im, p,q ∈ Rm+ , Pm =
∑m
i=1 pi, xPm = 1

Pm

∑m
i=1 pixi, and

where Φka,b(·) is de�ned by (6).

Proof. The �rst step we have to do is rewrite the Jensen functional (7) withm-tuple
p+ q instead of p, that is,

Jm(f,x,p+ q)

=
1

b− a

n−1∑
k=1

(
m∑
i=1

(pi + qi)Φ
k
a,b(xi)− (Pm +Qm)Φk

a,b(xPm+Qm)

)

+
1

(n− 1)!(b− a)

∫ b

a

(
m∑
i=1

(pi + qi)Rn(xi, s)− (Pm +Qm)Rn(xPm+Qm , s)

)
f (n)(s)ds.

Therefore, we arrive at the following identity

Jm(f,x,p+ q)− Jm(f,x,p)− Jm(f,x,q)

=
1

b− a

n−1∑
k=1

(
PmΦka,b(xPm

) +QmΦka,b(xQm
)− (Pm +Qm)Φka,b(xPm+Qm

)

)

+
1

(n− 1)!(b− a)

∫ b

a

(
PmRn(xPm

, s) +QmRn(xQm
, s)

− (Pm +Qm)Rn(xPm+Qm , s)

)
f (n)(s)ds.

(17)

Furthermore, since the function Rn(·, s) is convex on [a, b] for every �xed value s
and for even n ≥ 2, we have that

PmRn(xPm , s) +QmRn(xQm , s)

= (Pm +Qm)

(
Pm

Pm +Qm
Rn(xPm

, s) +
Qm

Pm +Qm
Rn(xQm

, s)

)
≥ (Pm +Qm)Rn

(
PmxPm

+QmxQm

Pm +Qm
, s

)
= (Pm +Qm)Rn(xPm+Qm

, s),

which together with f (n)(s) ≥ 0 yields positivity of the integral on the right-hand
side of (17). This means that (16) holds, as claimed.

If n = 2, then the sum on the right-hand side of inequality (16) vanishes, so
we obtain the starting superadditivity relation (2).

Remark 9. If the function f : I → R from Theorem 8 is n-concave, then the sign
of inequality (16) is reversed. Namely, the case of the reversed inequality sign in
(16) holds due to the fact that f (n)(s) ≤ 0, s ∈ [a, b], for n-concave function. Of
course, this fact will be valid for the results throughout this section, so it will be
omitted.
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Now, Theorem 8 implies some kind of monotonicity of the Jensen functional
which can be regarded as an extension of the classical relation (3).

Corollary 10. Let n be positive even integer and let f : I → R be n-convex
function such that f (n−1) is absolutely continuous. Further, let x ∈ [a, b]m ⊂ Im

and let p,q ∈ Rm+ be such that p ≥ q. Then holds the inequality

Jm(f,x,p)− Jm(f,x,q)

≥ 1

b− a

n−1∑
k=1

(
m∑
i=1

(pi − qi)Φ
k
a,b(xi)− PmΦka,b(xPm

) +QmΦka,b(xQm
)

)
,

(18)

where Pm =
∑m
i=1 pi, xPm

= 1
Pm

∑m
i=1 pixi, and where Φka,b(·) is de�ned by (6).

Proof. Considering (16) with p− q instead of p, we have that

Jm(f,x,p)− Jm(f,x,p− q)− Jm(f,x,q)

≥ 1

b− a

n−1∑
k=1

(
(Pm −Qm)Φka,b(xPm−Qm) +QmΦka,b(xQm)− PmΦka,b(xPm)

)
.

In addition, inequality (9) yields

Jm(f,x,p− q) ≥ 1

b− a

n−1∑
k=1

(
m∑
i=1

(pi − qi)Φ
k
a,b(xi)− (Pm −Qm)Φka,b(xPm−Qm)

)
,

which together with the previous relation implies (18), as claimed.

If n = 2, then the right-hand side of (18) vanishes, which provides usual
monotonicity of the Jensen functional for a convex function in the classical sense.

Remark 11. Inequality (18) can be derived directly from identity (7), without
using Theorem 8. For this purpose, let's start with the identity:

Jm(f,x,p)− Jm(f,x,q)

=
1

b− a

n−1∑
k=1

(
m∑
i=1

(pi − qi)Φ
k
a,b(xi)− PmΦka,b(xPm

) +QmΦka,b(xQm
)

)

+
1

(n− 1)!(b− a)

∫ b

a

(
m∑
i=1

piRn(xi, s)− PmRn(xPm
, s)

)
f (n)(s)ds

− 1

(n− 1)!(b− a)

∫ b

a

(
m∑
i=1

qiRn(xi, s)−QmRn(xQm
, s)

)
f (n)(s)ds.

(19)

Now, since Rn(·, s) is convex function in a usual sense, the classical monotonicity
principle (3) implies that the relation

m∑
i=1

piRn(xi, s)− PmRn(xPm
, s) ≥

m∑
i=1

qiRn(xi, s)−QmRn(xQm
, s)
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holds for every �xed value s ∈ [a, b]. Consequently, the di�erence between two
integrals in (19) is non-negative, so (18) holds.

In order to conclude this section, we give mutual bounds for the Jensen
functional (7) in terms of the adjoint non-weighted functional. The corresponding
bounds that hold for n-convex functions, where n is even, can be regarded as an
extension of bounds in (4).

Corollary 12. Let n be positive even integer and let f : I → R be n-convex function
such that f (n−1) is absolutely continuous. Then hold the inequalities

Jm(f,x,p)−mpminIm(f,x)

≥ 1

b− a

n−1∑
k=1

(
m∑
i=1

(pi − pmin)Φ
k
a,b(xi)− PmΦka,b(xPm) +mpminΦ

k
a,b(xm)

)
(20)

and

mpmaxIm(f,x)− Jm(f,x,p)

≥ 1

b− a

n−1∑
k=1

(
m∑
i=1

(pmax − pi)Φ
k
a,b(xi)−mpmaxΦ

k
a,b(xm) + PmΦka,b(xPm

)

)
,

(21)

where x ∈ [a, b]m ⊂ Im, p ∈ Rm+ , pmin = min1≤i≤m pi, pmax = max1≤i≤m pi,
Pm =

∑m
i=1 pi, xPm = 1

Pm

∑m
i=1 pixi, xm = 1

m

∑m
i=1 xi, and where Φka,b(·) is de�ned

by (6).

Proof. Since (pmin, pmin, . . . , pmin) ≤ p ≤ (pmax, pmax, . . . , pmax), the corresponding
result follows from (18).

Note also that the right-hand sides of (20) and (21) vanish for n = 2, so in
this setting we obtain already known bounds (4).

In the sequel, we will establish some new estimates for power means. In
particular, we obtain new arithmetic-geometric and arithmetic-harmonic mean in-
equalities in both quotient and di�erence forms. Similar results, in companion with
the Montgomery identity, have been established in our earlier paper [2].

4. APPLICATION TO POWER MEANS

A quasi-arithmetic mean Mψ of x = (x1, x2, . . . , xm) ∈ [a, b]m with weights
p = (p1, p2, . . . , pm) ⊂ Rm+ is de�ned by

(22) Mψ (x,p) = ψ−1

(
1

Pm

m∑
i=1

piψ(xi)

)
,
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where ψ : [a, b] → R is a continuous strictly monotone function and Pm =
∑m
i=1 pi.

If p1 = p2 = · · · = pm, we obtain the non-weighted mean, denoted by

mψ(x) = ψ−1

(
1

m

m∑
i=1

ψ(xi)

)
.

Throughout this section we denote ψa = min{ψ(a), ψ(b)}, ψb = max{ψ(a), ψ(b)},
where χ and ψ are strictly monotone functions. In this setting we consider the
Jensen functional

Jm(χ ◦ ψ−1, ψ(x),p) = Pm (χ(Mχ (x,p))− χ(Mψ (x,p))) ,

that is, the inequality

(23) χ(Mχ (x,p)) ≥ χ(Mψ (x,p)),

provided that χ ◦ ψ−1 is a convex function (for more details, see [11, 12]). Of
course, inequalities in (4) provide the following re�nement and reverse of (23) (for
more details, see [8, 9]):

mpmax (χ(mχ (x))− χ(mψ (x)))

≥ Pm (χ(Mχ (x,p))− χ(Mψ (x,p)))

≥ mpmin (χ(mχ (x))− χ(mψ (x))) .

(24)

The most typical example of quasi-arithmetic mean (22) is a power mean de�ned
by

(25) Mr (x,p) =


(

1
Pm

∑m
i=1 pixi

r
) 1

r

, r ̸= 0,

(
∏m
i=1 xi

pi)
1

Pm , r = 0.

Clearly, (25) is a special case of (22) when ψ(t) = tr, for r ̸= 0, and ψ(t) =
log t, for r = 0. Recall that r = 1, 0,−1 provide the arithmetic, geometric and
harmonic mean, respectively. The most important power mean inequality describes
monotonicity property of means and asserts that if r < s, then

(26) Mr (x,p) ≤Ms (x,p) .

If p1 = p2 = · · · = pm, we obtain the non-weighted power mean

mr (x) =

{ (
1
m

∑m
i=1 xi

r
) 1

r , r ̸= 0,

(
∏m
i=1 xi)

1
m , r = 0.

Of course, by putting χ(t) = ts and ψ(t) = tr, s, r ̸= 0, in (24), one obtains
re�nement and reverse of (26), i.e.

(27)
mpmax

Pm
(ms

s(x)−ms
r(x)) ≥Ms

s (x,p)−Ms
r (x,p) ≥

mpmin

Pm
(ms

s(x)−ms
r(x)),
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provided that s ≤ 0 < r, r < 0 ≤ s, 0 < r ≤ s or s ≤ r < 0 (see also [6]).
For more details about quasi-arithmetic and power means, the reader is referred to
monographs [11, 12], as well as to papers [6, 8, 9] and the references cited therein.

Now, our aim is to derive power mean inequalities relying on higher order
convexity. The starting point in this direction is to �nd a suitable conditions under
which the function f = χ ◦ ψ−1 is n-convex or n-concave.

Since the power means are special cases of quasi-arithmetic means for par-
ticular choices of χ and ψ, let us �rst set χ(t) = ts and ψ(t) = tr, t > 0, where
r, s ̸= 0. In this case the function f(t) = (χ ◦ψ−1)(t) = t

s
r is n times di�erentiable,

for every n ∈ N, and we have that

f (n)(t) =

n∏
k=1

(s
r
− k + 1

)
t
s
r−n =

(s
r

)n
t
s
r−n,

where n stands for the falling factorial, i.e. xn = x(x− 1) · · · (x− n+ 1). Now, we
need to discuss the sign of the above n-th derivation. Of course, we are interested
in the case when n is even. Then, f (n)(t) ≥ 0 if

(28)
s

r
∈ (−∞, 0] ∪ [1, 2] ∪ [3, 4] ∪ . . . ∪ [n− 3, n− 2] ∪ [n− 1,∞),

while f (n)(t) < 0 if

(29)
s

r
∈ (0, 1) ∪ (2, 3) ∪ (4, 5) ∪ . . . ∪ (n− 2, n− 1).

We proceed with cases when one of the parameters r and s is equal to zero. If
s = 0, then by putting χ(t) = log t and ψ(t) = tr, we have that f(t) = (χ◦ψ−1)(t) =
1
r log t is n times di�erentiable for every n ∈ N, and so

f (n)(t) =
1

r
(−1)n−1(n− 1)! t−n.

Consequently, it follows that f is n-convex if r > 0 and n is odd, or if r < 0 and n
is even. On the other hand, f is n-concave if r > 0 and n is even, or if r < 0 and
n is odd. In the case when r > 0 the function ψ(t) = tr is strictly increasing, so
ψa = ar and ψb = br, while for r < 0 we have ψa = br and ψb = ar.

Finally, if r = 0, then by putting χ(t) = ts and ψ(t) = log t, we obtain that
the function f(t) = (χ◦ψ−1)(t) = est is also n times di�erentiable, for every n ∈ N,
so we have f (n)(t) = sn est. Hence, if s > 0, then f is n-convex for every n ∈ N.
Otherwise, if s < 0, then f is n-convex for every even n, and n-concave for every
odd n. In addition, the function ψ(t) = log t is strictly increasing, so in this case
we have ψa = log a and ψb = log b. For more detailed discussion about the n-th
derivative of the above functions, the reader is referred to our earlier paper [2].

Now, by virtue of the Jensen-type inequality (9) and the above discussion, we
obtain a whole series of power mean inequalities that correspond to monotonicity
relation (26). Our �rst result refers to parameters r and s not equal to zero.
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Corollary 13. Let n be positive even integer, let r, s ̸= 0 be real numbers, and let

x ∈ [a, b]m ⊂ Rm+ , p ∈ Rm+ . If (28) holds, then

Ms
s (x,p)−Ms

r (x,p)

≥ 1

br − ar

n−1∑
k=1

n− k

k!

(s
r

)k−1
(

1

Pm

m∑
i=1

pih
k,r,s
a,b (xi)− hk,r,sa,b (Mr(x,p))

)
,

(30)

where

(31) hk,r,sa,b (x) = bs−r(k−1)(xr − br)k − as−r(k−1)(xr − ar)k.

Conversely, if (29) holds, then the sign of inequality (30) is reversed.

Proof. Let's consider inequality (9) with f(t) = t
s
r , withm-tuple xr = (xr1, x

r
2, . . . , x

r
m)

instead of x = (x1, x2, . . . , xm), and with min{ar, br}, max{ar, br} instead of a, b,
respectively. Then (30) holds due to an obvious formula

Φkar,br (x
r) =

n− k

k!

(s
r

)k−1

hk,r,sa,b (x).

Remark 14. In particular, let s = 1 and r = −1. Then, s
r = −1, which means

that inequality (30) is valid in this case since (28) holds. It should be noticed here
that this setting provides a variant of the arithmetic-harmonic inequality. Namely,
by putting qi =

Pm

pi
, i = 1, 2, . . . ,m, we obtain the inequality

m∑
i=1

xi
qi

− 1∑m
i=1

1
qixi

≥ 1

b−1 − a−1

n−1∑
k=1

(−1)k−1(n− k)

k

(
m∑
i=1

hk,−1,1
a,b (xi)

qi
− hk,−1,1

a,b

(
1∑m

i=1
1
qixi

))
.

Our next two consequences of inequality (9) refer to the cases when one of pa-
rameters r and s is equal to zero. Of course, in these cases we deal with a comparison
with the geometric mean. In particular, we obtain variants of arithmetic-geometric
mean inequality in both quotient and di�erence forms.

Corollary 15. Let n be positive even integer, let r < 0, and let x ∈ [a, b]m ⊂ Rm+ ,

p ∈ Rm+ . Then holds the inequality

logM0(x,p)− logMr(x,p)

≥ 1

r(br − ar)

n−1∑
k=1

(−1)k−2(n− k)

(k − 1)k

(
1

Pm

m∑
i=1

pih
k,r,0
a,b (xi)− hk,r,0a,b (Mr(x,p))

)
,

(32)

where hk,r,0a,b (·) is de�ned by (31). Otherwise, if r > 0, then the sign of (32) is

reversed.
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Proof. It is similar to the proof of Corollary 13, except that we consider f(t) =
1
r log t instead of f(t) = t

s
r . Then, (32) holds after utilizing the formula

Φkar,br (x
r) =

(−1)k−2(n− k)

r(k − 1)k
hk,r,0a,b (x).

Remark 16. In the case of r = 1, the reverse of (32) yields a new version of
the arithmetic-geometric mean inequality in a quotient form. More precisely, by
putting r = 1 and qi =

Pm

pi
, i = 1, 2, . . . ,m, in the reverse of (32), we arrive at the

inequality∏m
i=1 x

1
qi
i∑m

i=1
xi

qi

b−a

≤ exp

(
n−1∑
k=1

(−1)k−2(n− k)

(k − 1)k

(
m∑
i=1

hk,1,0a,b (xi)

qi
− hk,1,0a,b

(
m∑
i=1

xi
qi

)))
,

which holds for a positive even integer n.

Corollary 17. Let n be positive even integer, let s be real number, and let x ∈
[a, b]m ⊂ Rm+ , p ∈ Rm+ . Then holds the inequality

Ms
s (x,p)−Ms

0 (x,p)

≥ 1

log b
a

n−1∑
k=1

(n− k)sk−1

k!

(
1

Pm

m∑
i=1

pil
k,s
a,b(xi)− lk,sa,b(M0(x,p))

)
,

(33)

where

(34) lk,sa,b(x) = bs logk
x

b
− as logk

x

a
.

Proof. We consider (9) with f(t) = est and with logx = (log x1, log x2, . . . , log xm),
log a, log b instead of x = (x1, x2, . . . , xm), a, b, respectively. Then, (33) holds due
to

Φklog a,log b(log x) =
(n− k)sk−1

k!
lk,sa,b(x).

Remark 18. By putting s = 1 and qi =
Pm

pi
, i = 1, 2, . . . ,m, in (33), we arrive

at the following version of the arithmetic-geometric mean inequality in a di�erence
form:

m∑
i=1

xi
qi

−
m∏
i=1

x
1
qi
i

≥ 1

log b
a

n−1∑
k=1

n− k

k!

(
m∑
i=1

lk,1a,b (xi)

qi
− lk,1a,b

(
m∏
i=1

x
1
qi
i

))
.

(35)

Let's note once again that this inequality is valid for a positive even integer n. In
this setting, we have that

∑m
i=1

1
qi

= 1. This form of the arithmetic-geometric mean
inequality is usually referred to as the Young-type inequality.
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If n = 2, then, according to our discussion in Remark 4, inequalities (30),
(32) and (33) reduce to the basic mean inequality (26), since their right-hand sides
vanish. Generally speaking, if n > 2 is even, then any of relations (30), (32) or (33)
can represent re�nement of the basic monotonicity relation (26) if its right-hand
side is non-negative. Otherwise, it is weaker than (26).

Now, our goal is to derive versions of inequalities (30), (32) and (33) that rely
on Corollary 12 from the previous section. In other words, we give mutual bounds
for the di�erences of power means in terms of the corresponding non-weighted
means (for all possible cases of parameters r and s). Of course, the established
relations are related to the inequalities in (27).

Corollary 19. Let n be positive even integer, let r, s ̸= 0 be real numbers, and let

x ∈ [a, b]m ⊂ Rm+ , p ∈ Rm+ . If condition (28) holds, then hold the inequalities

Ms
s (x,p)−Ms

r (x,p)−
mpmin

Pm
(ms

s(x)−ms
r(x))

≥ 1

br − ar

n−1∑
k=1

n− k

k!

(s
r

)k−1

×

(
1

Pm

m∑
i=1

(pi − pmin)h
k,r,s
a,b (xi)− hk,r,sa,b (Mr(x,p)) +

mpmin

Pm
hk,r,sa,b (mr(x))

)

and

mpmax

Pm
(ms

s(x)−ms
r(x))− (Ms

s (x,p)−Ms
r (x,p))

≥ 1

br − ar

n−1∑
k=1

n− k

k!

(s
r

)k−1

×

(
1

Pm

m∑
i=1

(pmax − pi)h
k,r,s
a,b (xi)−

mpmax

Pm
hk,r,sa,b (mr(x)) + hk,r,sa,b (Mr(x,p))

)
,

where hk,r,sa,b (·) is de�ned by (31) and pmin = min1≤i≤m pi, pmax = max1≤i≤m pi.
Otherwise, if (29) holds, then the signs of both inequalities are reversed.

Corollary 20. Let n be positive even integer, let r < 0, and let x ∈ [a, b]m ⊂ Rm+ ,

p ∈ Rm+ . Then hold the inequalities

log
M0(x,p)

Mr(x,p)
− mpmin

Pm
log

m0(x)

mr(x)

≥ 1

r(br − ar)

n−1∑
k=1

(−1)(k−2)(n− k)

(k − 1)k

×

(
1

Pm

m∑
i=1

(pi − pmin)h
k,r,0
a,b (xi)− hk,r,0a,b (Mr(x,p)) +

mpmin

Pm
hk,r,0a,b (mr(x))

)



60 Marija Bo²njak, Mario Krni¢ and Josip Pe£ari¢

and

mpmax

Pm
log

m0(x)

mr(x)
− log

M0(x,p)

Mr(x,p)
)

≥ 1

r(br − ar)

n−1∑
k=1

(−1)k−2(n− k)

(k − 1)k

×

(
1

Pm

m∑
i=1

(pmax − pi)h
k,r,0
a,b (xi)−

mpmax

Pm
hk,r,0a,b (mr(x)) + hk,r,0a,b (Mr(x,p))

)
,

where hk,r,0a,b (·) is de�ned by (31) and pmin = min1≤i≤m pi, pmax = max1≤i≤m pi.
Conversely, if r > 0, then the signs of both inequalities are reversed.

Corollary 21. Let n be positive even integer, let s be real number and let x ∈
[a, b]m ⊂ Rm+ , p ∈ Rm+ . Then,

Ms
s (x,p)−Ms

0 (x,p)−
mpmin

Pm
(ms

s(x)−ms
0(x))

≥ 1

log b
a

n−1∑
k=1

(n− k)sk−1

k!

×

(
1

Pm

m∑
i=1

(pi − pmin)l
k,s
a,b(xi)− lk,sa,b(M0(x,p)) +

mpmin

Pm
lk,sa,b(m0(x))

)

and

mpmax

Pm
(ms

s(x)−ms
0(x))− (Ms

s (x,p)−Ms
0 (x,p))

≥ 1

log b
a

n−1∑
k=1

(n− k)sk−1

k!

×

(
1

Pm

m∑
i=1

(pmax − pi)l
k,s
a,b(xi)−

mpmax

Pm
lk,sa,b(m0(x)) + lk,sa,b(M0(x,p))

)
,

where lk,sa,b(·) is de�ned by (34) and pmin = min1≤i≤m pi, pmax = max1≤i≤m pi.

In should be noticed here that any of inequalities in Corollaries 19, 20 and
21 can represent an improvement of (27), provided that its right-hand side is non-
negative.

Remark 22. The previous three corollaries can also be exploited in establishing
some particular mean inequalities as in Remarks 14, 16 and 18. For an illustration,
we give here only mutual bounds for the di�erence between the arithmetic and
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geometric mean expressed in terms of the corresponding non-weighted means. More
precisely, by putting s = 1 and qi =

Pm

pi
, i = 1, 2, . . . ,m, in Corollary 21, we arrive

at the inequalities

m∑
i=1

xi
qi

−
m∏
i=1

x
1
qi
i − m

qmax

(
1

m

m∑
i=1

xi −
( m∏
i=1

xi

) 1
m

)

≥ 1

log b
a

n−1∑
k=1

(n− k)

k!

×

(
m∑
i=1

( 1
qi

− 1

qmax

)
lk,1a,b (xi)− lk,1a,b

( m∏
i=1

x
1
qi
i

)
+

m

qmax
lk,1a,b

(( m∏
i=1

xi
) 1

m

))
and

m

qmin

(
1

m

m∑
i=1

xi −
( m∏
i=1

xi

) 1
m

)
−

(
m∑
i=1

xi
qi

−
m∏
i=1

x
1
qi
i

)

≥ 1

log b
a

n−1∑
k=1

(n− k)

k!

×

(
m∑
i=1

( 1

qmin
− 1

qi

)
lk,1a,b (xi) + lk,1a,b

( m∏
i=1

x
1
qi
i

)
− m

qmin
lk,1a,b

(( m∏
i=1

xi
) 1

m

))
,

where qmin = min1≤i≤m qi and qmax = max1≤i≤m qi.

5. HÖLDER-TYPE INEQUALITIES BASED ON THE FINK
IDENTITY

In this section we give another signi�cant consequence of the established
Jensen-type inequalities. Among many applications of the Jensen inequality, the
Hölder inequality certainly stands out. Let (Ω,Σ, µ) be σ-�nite measure space and
let
∑m
i=1

1
qi

= 1, qi > 1. Recall that if fi ∈ Lqi(Ω), i = 1, 2, . . . ,m, are non-negative
measurable functions, then holds the inequality

(36)

∫
Ω

m∏
i=1

fi(x)dµ(x) ≤
m∏
i=1

∥fi∥qi .

It is well known that the Hölder inequality can be derived in several ways, among
others via the arithmetic-geometric mean inequality, i.e. the Young inequality (for
more details, see [11, 12]). Using this fact, the Young-type relation (35) can be
exploited in establishing a new Hölder-type inequality based on the Fink identity.

It should be noticed here that since the corresponding result leans on identity
(5), we have to require some additional conditions on non-negative measurable
functions fi ∈ Lqi(Ω), i = 1, 2, . . . ,m.
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Theorem 23. Let (Ω,Σ, µ) be σ-�nite measure space and let
∑m
i=1

1
qi

= 1, qi > 1,

i = 1, 2, . . . ,m. Further, suppose that fi ∈ Lqi(Ω), i = 1, 2, . . . ,m, are non-negative

measurable functions such that

(37) a
1
qi ∥fi∥qi ≤ fi(x) ≤ b

1
qi ∥fi∥qi , x ∈ Ω, i = 1, 2, . . . ,m,

where 0 < a < b. Then holds the inequality

m∏
i=1

∥fi∥qi −
∫
Ω

m∏
i=1

fi(x)dµ(x)

≥
∏m
i=1 ∥fi∥qi
log b

a

×
n−1∑
k=1

n− k

k!

(
m∑
i=1

1

qi

∫
Ω

lk,1a,b

(
fqii (x)

∥fi∥qiqi

)
dµ(x)−

∫
Ω

lk,1a,b

(
m∏
i=1

fi(x)

∥fi∥qi

)
dµ(x)

)
,

(38)

where lk,sa,b(·) is de�ned by (34).

Proof. The key idea is to put fqii (x)/∥fi∥qiqi , x ∈ Ω, instead of xi, i = 1, 2, . . . ,m,
in (35). Of course, this can be done due to conditions in (37). Therefore, we arrive
at the inequality

m∑
i=1

fqii (x)

qi∥fi∥qiqi
−

m∏
i=1

fi(x)

∥fi∥qi

≥ 1

log b
a

n−1∑
k=1

n− k

k!

(
m∑
i=1

1

qi
lk,1a,b

(
fqii (x)

∥fi∥qiqi

)
− lk,1a,b

(
m∏
i=1

fi(x)

∥fi∥qi

))
.

Now, integrating the above inequality over Ω with respect to the measure µ, we get

m∑
i=1

1

qi
−
∫
Ω

∏m
i=1 fi(x)dµ(x)∏m
i=1 ∥fi∥qi

≥ 1

log b
a

n−1∑
k=1

n− k

k!

(
m∑
i=1

1

qi

∫
Ω

lk,1a,b

(
fqii (x)

∥fi∥qiqi

)
dµ(x)−

∫
Ω

lk,1a,b

(
m∏
i=1

fi(x)

∥fi∥qi

)
dµ(x)

)
.

Finally, since
∑m
i=1

1
qi

= 1, multiplying the last inequality by
∏m
i=1 ∥fi∥qi , we obtain

(38), as asserted.

Based on Remark 22, below we give two more Hölder-type inequalities. In
fact, we obtain mutual bounds for the Hölder inequality in a di�erence form, with
which we conclude this paper.



Application of the Fink identity to Jensen-type inequalities 63

Theorem 24. Suppose that the assumptions as in Theorem 23 are satis�ed. Then

hold the inequalities

1−
∫
Ω

∏m
i=1 fi(x)dµ(x)∏m
i=1 ∥fi∥qi

− m

qmax

1−
∫
Ω

∏m
i=1 f

qi
m
i (x)dµ(x)∏m

i=1 ∥fi∥
qi
m
qi


≥ 1

log b
a

n−1∑
k=1

n− k

k!

(
m∑
i=1

( 1
qi

− 1

qmax

)∫
Ω

lk,1a,b

(
fqii (x)

∥fi∥qiqi

)
dµ(x)

−
∫
Ω

lk,1a,b

(
m∏
i=1

fi(x)

∥fi∥qi

)
dµ(x) +

m

qmax

∫
Ω

lk,1a,b

(
m∏
i=1

f
qi
m
i (x)

∥fi∥
qi
m
qi

)
dµ(x)

)
and

m

qmin

1−
∫
Ω

∏m
i=1 f

qi
m
i (x)dµ(x)∏m

i=1 ∥fi∥
qi
m
qi

−
(
1−

∫
Ω

∏m
i=1 fi(x)dµ(x)∏m
i=1 ∥fi∥qi

)

≥ 1

log b
a

n−1∑
k=1

n− k

k!

(
m∑
i=1

( 1

qmin
− 1

qi

)∫
Ω

lk,1a,b

(
fqii (x)

∥fi∥qiqi

)
dµ(x)

+

∫
Ω

lk,1a,b

(
m∏
i=1

fi(x)

∥fi∥qi

)
dµ(x)− m

qmin

∫
Ω

lk,1a,b

(
m∏
i=1

f
qi
m
i (x)

∥fi∥
qi
m
qi

)
dµ(x)

)
,

where qmin = min1≤i≤m qi and qmax = max1≤i≤m qi.

Proof. The proof is similar to the proof of Theorem 23 except that we use relations
from Remark 22 instead of inequality (35).
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