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OSCILLATION THEOREMS FOR CERTAIN

HIGHER ORDER NONLINEAR FUNCTIONAL

DIFFERENTIAL EQUATIONS

Ravi P. Agarwal, Said R. Grace, Patricia J. Y. Wong

Some new oscillation theorems for higher-order nonlinear functional differen-
tial equations of the form

dn

dtn

(

a(t)

(

dnx(t)

dtn

)

α
)

+ q(t)f
(

x
(

g(t)
))

= 0, α > 0,

are established.

1. INTRODUCTION

This paper is concerned with the oscillatory behavior of the higher-order
nonlinear functional differential equation

(1.1) L2nx(t) + q(t)f
(

x
(

g(t)
))

= 0,

where the differential operator, L2n, is defined recursively by

(1.1)′



























L0x = x,

Lix =
d

dt
Li−1x, i = 1, 2, . . . , n − 1,

Ljx =
dj−n

dtj−n

(

a

(

d

dt
Ln−1x

)α)

=
dj−n

dtj−n
Lnx, j = n, n + 1, . . . , 2n.

Clearly

Lix =
d

dt
Li−1x, i = 1, 2, . . . , n − 1, n + 1, . . . , 2n,
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and

Lnx = a

(

d

dt
Ln−1x

)α

.

In what follows we assume that

(i) a(t), q(t) ∈ C
(

[t0,∞), R+ = (0,∞)
)

,

(ii) g(t) ∈ C
(

[t0,∞), R = (−∞,∞)
)

and lim
t→∞

g(t) = ∞,

(iii) f ∈ C(R, R) and xf(x) > 0 for x 6= 0,

(iv) α is the ratio of two positive odd integers.

Also we assume that

(1.2)
∞
∫

a−1/α(s) ds = ∞.

By a solution of equation (1.1) we mean a function x ∈ Cn([t0,∞), R) to-
gether with a(x(n))α ∈ Cn([t0,∞), R) which satisfies equation (1.1) for all t ≥
tx ≥ t0 ≥ 0. Here we are concerned with proper solutions of equation (1.1), i.e.
those solutions x(t) which satisfy sup{|x(t)| : t ≥ T } > 0 for every T ≥ tx. Such a
solution is said to be oscillatory if it has an infinite sequence of zeros clustering at
infinity and nonoscillatory if it has at most a finite number of zeros in its interval
of existence. Equation (1.1) is called oscillatory if all its solutions are oscillatory.

The problem of obtaining the nonoscillation and oscillation of certain higher-
order nonlinear functional differential equations of type (1.1) when α = 1 and/or
α > 0 has been studied by a number of authors, see [1–14, 16–21] and the references
cited therein. Indeed, Mahfoud [16, 17] discussed the oscillation of the special
case of (1.1)

x(n)(t) + a(t)f
(

x
(

q(t)
))

= 0.

Our main objective in this paper is to present an asymptotic study on the oscillation
of equation (1.1) and to establish some new oscillation criteria.

In Section 2 we give the proofs of some important lemmas which are useful
throughout this paper. Section 3 is devoted to the study of equation (1.1) when f
satisfies either f (1/α)−1(x)f ′(x) ≥ k > 0 for x 6= 0 or f(x) sgn x ≥ |x|α. Also, our
results involve comparison with related linear and half-linear second-order differen-
tial equations. In Section 4 we present some sufficient conditions for the oscillation

of equation (1.1) when f satisfies either the condition
±∞
∫

du/f1/α(u) < ∞ or the
condition

∫

±0

du/f(u1/α) < ∞. Section 5 is devoted to study of some necessary and

sufficient conditions for the oscillation of equation (1.1). In Section 6 we give a
comparison result which allows us to extend the results obtained to functional dif-
ferential equations of neutral type and to equations of type (1.1) when the function
f need not be monotonic. The results obtained extend, improve and corollate a
number of existing results.
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2. PRELIMINARIES

To obtain our main results we need the following lemma which is a generali-
zation of the well-known lemma of Kiguradze [3].

Lemma 2.1. Let x(t) be a nonoscillatory solution of equation (1.1) and condition

(1.2) hold. Then there exist an odd integer k ∈ {1, 3, . . . , 2n−1} and a T ≥ t0 such

that for t ≥ T,

(2.1)

{

x(t)Lix(t) > 0 for i = 0, 1, . . . , k − 1 and

(−1)i+kx(t)Lix(t) > 0 for i = k, k + 1, . . . , 2n− 1.

Proof. Let x(t) be a nonoscillatory solution of equation (1.1), say, x(t) > 0 for
t ≥ t0. Since L2nx(t) ≤ 0 for t ≥ t0, it follows that Lix(t), i = 1, 2, . . . , 2n − 1,
are eventually of constant sign. Firstly we prove that L2n−1x(t) > 0 for t ≥ T for
some T ≥ t0. To this end, we suppose that for some T1 ≥ T we have L2n−1x(t) ≤
0, t ≥ T1. Then, since L2n−1x(t) is decreasing and not identically zero on [T1,∞),
there exist a T2 ≥ T1 and a constant c > 0 such that Lix(t) ≤ −c for t ≥ T2 and
i ∈ {1, 3, . . . , 2n − 1} for otherwise integration of the inequality would imply that
L0x(∞) = x(∞) = −∞, which contradicts the fact that x(t) > 0 on [t0,∞). From
this fact it follows that none of the consecutive derivatives Lix(t) and Li+1x(t) can
be eventually negative.

Next the positivity of L2n−1x(t) on [T,∞) implies that L2n−2x(t) is increasing
there. Here there are two cases to consider:

Case (I). L2n−2x(t) > 0 on [t1,∞) for some t1 ≥ T. There exist a constant
c1 > 0 and a t2 ≥ t1 such that L2n−2x(t) ≥ c1 for t ≥ t2. One can easily see that
Lix(∞) = ∞ for i = 1, 2, . . . , 2n − 3 which shows that Lix(t), i = 1, 2, . . . , 2n − 3,
are eventually positive.

Case (II). L2n−2x(t) < 0 on [T ,∞), T ≥ T. Clearly L2n−3x(t) must remain pos-
itive on [T ,∞) since the simultaneous negativity of L2n−2x(t) and L2n−3x(t) is
impossible.

Repeatedly applying the same arguments as above we arrive at the desired
conclusion. �

From Lemma 2.1 we distinguish the following three cases: (i) k = 2n− 1,
(ii) n + 1 ≤ k ≤ 2n− 3 and (iii) 1 ≤ k ≤ n.

(i) Let k = 2n− 1. Since L2n−1x(t) > 0 is decreasing on [T,∞), we have

L2n−2x(t) ≥ (t − T )L2n−1x(t), t ≥ T.

Integrating this inequality (n − 2) times from T to t and using the decreasing
property of L2n−1x(t), we obtain

Lnx(t) ≥
(t − T )n−1

(n − 1)!
L2n−1x(t), t ≥ T



4 Ravi P. Agarwal, Said R. Grace, Patricia J. Y. Wong

or

x(n)(t) ≥

(

(t − T )n−1

(n − 1)! a(t)

)1/α

L
1/α
2n−1x(t), t ≥ T.

By applying Taylor’s formula with integral remainder we get

(2.2) x(j)(t) ≥

( t
∫

T

(t − u)n−j−1

(n − j − 1)!

(

(u − T )n−1

(n − 1)!a(u)

)1/α

du

)

L
1/α
2n−1x(t)

for j = 0, 1, . . . , n − 1 and t ≥ T.

(ii) Let n + 1 ≤ k ≤ 2n− 3. From Lemma 2.1 we see that L2n−1x(t) > 0 is
decreasing and L2n−2x(t) < 0 for t ≥ T. Now

L2n−2x(t) − L2n−2x(s) =
t
∫

s

L2n−1x(u) du, t ≥ s ≥ T

and so

(2.3) −L2n−2x(s) ≥ (t − s)L2n−1x(t).

Integrating the above inequality (2n − k − 2) times from s to t yields

(−1)2n−k−1Lkx(s) ≥
(t − s)2n−k−1

(2n − k − 1)!
L2n−1x(t)

or

(2.4) Lkx(s) ≥
(t − s)2n−k−1

(2n − k − 1)!
L2n−1x(t) for t ≥ s ≥ T.

Integrating (2.4) (k − n) times from T to s (≥ T ) we have

Lnx(s) ≥

( s
∫

T

(s − u)k−n−1

(k − n − 1)!

(t − u)2n−k−1

(2n − k − 1)!
du

)

L2n−1x(t)

or, equivalently,

x(n)(s) ≥

(

1

a(s)

s
∫

T

(s − u)k−n−1

(k − n − 1)!

(t − u)2n−k−1

(2n − k − 1)!
du

)1/α

L
1/α
2n−1x(t).

As in case (i) one can easily find that

(2.5) x(j)(s)

≥

( s
∫

T

(s − v)n−j−1

(n − j − 1)!

(

1

a(v)

v
∫

T

(v − u)k−n−1

(k − n − 1)!

(t − u)2n−k−1

(2n − k − 1)!
du

)1/α

dv

)

L2n−1x(t)
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for j = 0, 1, . . . , n − 2, t ≥ s ≥ T.

(iii) Let 1 ≤ k ≤ n. Then as in case (ii), we obtain (2.3) for t ≥ s ≥ T.
Integrating (2.3) (n − 2) times from s to t(≥ s ≥ T ) one can easily find that

(2.6) (−1)n−1x(n)(s) ≥

(

1

a(s)

(t − s)n−1

(n − 1)!

)1/α

L2n−1x(t).

Next integrating (2.6) (n − k) times from s to t (≥ s ≥ T ) we find that

(−1)2n−k−1x(k)(s)

= x(k)(s) ≥

( t
∫

s

(u − s)n−k−1

(n − k − 1)!

(

1

a(u)

(t − u)n−1

(n − 1)!

)1/α

du

)

L
1/α
2n−1x(t).

As in case (i) we find that

x(j)(s)

≥





s
∫

T

(s − v)k−j−1

(k − j − 1)!

( t
∫

v

(u − v)n−k−1

(n − k − 1)!

(

1

a(u)

(t − u)n−1

(n − 1)!

)1/α

du

)

dv



L
1/α
2n−1x(t)

for k − 1 ≥ j = 0, 1, and, if k − 1 < j = 0, 1,

x(j)(s) ≥

( t
∫

s

(u − s)n−2

(n − 2)!

(

1

a(u)

(t − u)n−1

(n − 1)!

)1/α

du

)

L
1/α
2n−1x(t).

For t ≥ T/λ ≥ t0, k ∈ {1, 3, . . . , 2n− 1} and for some constant λ, 0 < λ < 1,
we define

Hj(t, T ; a; k; λ) = min

{ λt
∫

T

(λt − u)n−j−1

(n − j − 1)!

(

(u − T )n−1

(n − 1)!

1

a(u)

)1/α

du

if k = 2n − 1,
λt
∫

T

(λt − v)n−j−1

(n − j − 1)!

(

1

a(v)

v
∫

T

(v − u)k−n−1

(k − n − 1)!

(t − u)2n−k−1

(2n − k − 1)!
du

)1/α

dv

if n + 1 ≤ k ≤ 2n − 3,
λt
∫

T

(λt − v)k−j−1

(k − j − 1)!

( t
∫

v

(u − v)n−k−1

(n − k − 1)!

(

1

a(u)

(t − u)n−1

(n − 1)!

)1/α

du

)

dv

if 1 ≤ k ≤ n, k − 1 ≥ j, j = 0, 1,
t
∫

λt

(u − λt)n−2

(n − 2)!

(

1

a(u)

(t − u)n−1

(n − 1)!

)1/α

du if 1 ≤ k ≤ n, k − 1 < j, j = 0, 1

}

.
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We are now ready to state the following important lemma.

Lemma 2.2. Let x(t) be a positive solution of equation (1.1). Then for some

constant λ, 0 < λ < 1 and all large t ≥ T ≥ t0 and for k ∈ {1, 3, . . . , 2n − 1},

(2.7) x′(λt) ≥ H1(t, T ; a; k; λ)L
1/α
2n−1x(t)

and

(2.8) x(t) ≥ x(λt) ≥ H0(t, T ; a; k; λ)L
1/α
2n−1x(t).

We shall also need the following lemmas.

Lemma 2.3 [15]. If X and Y are nonnegative, then

Xλ + (λ − 1)Y λ − λXY λ−1 ≥ 0, λ > 1,

where equality holds if and only if X = Y.

Lemma 2.4 [4,5]. The semilinear differential equation

(2.9)
(

a(t)
(

x′(t)
)α)′

+ q(t)xα(t) = 0,

where a, q and x are as in equation (1.1) is nonoscillatory if and only if there exist

a number T ≥ t0 and a function v(t) ∈ C1([t0,∞), R which satisfies the inequality

v′(t) + αa−1/α(t) |v(t)|1+1/α + q(t) ≤ 0 on [T,∞).

Lemma 2.5 [5]. Let h(t) ∈ C([T,∞), R+), T ≥ t0. If there exists a function

v(t) ∈ C1([T,∞), R) such that

v′(t) + h(t)v2(t) + q(t) ≤ 0 for every t ≥ T,

then the second-order linear differential equation

(

1

h(t)
x′(t)

)′

+ q(t)x(t) = 0

is nonoscillatory.

3. OSCILLATION AND COMPARISON RESULTS

In this section we present some sufficient conditions for the oscillation of equa-
tion (1.1). Also our results involve comparison with related linear and semilinear
second-order differential equations so that the known oscillation theorems from the
literature can be employed directly.
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In what follows we assume that

(3.1) f1/α−1(x)f ′(x) ≥ k > 0 for x 6= 0 and k is a constant.

We also assume that there exists a function, σ(t) ∈ C1([t0,∞), R+), such that

(3.2) σ(t) ≤ inf{t, g(t)}, σ′(t) > 0 for t ≥ t0 and lim
t→∞

σ(t) = ∞.

Theorem 3.1. Let conditions (1.2), (3.1) and (3.2) hold. If there exist a function

ρ(t) ∈ C1([t0,∞), R+) and a constant λ, 0 < λ < 1, such that for σ(t) > T/λ,
T ≥ t0, then

(3.3) lim sup
t→∞

t
∫

T

(

ρ(s)q(s)

−
1

(λk)α

αα

(1 + α)1+α

(ρ′(s))α+1

(

ρ(t)σ′(t)H1(σ(s), T ; a; k; λ)
)α

)

ds = ∞,

where H1 is as in Lemma 2.2, k ∈ {1, 3, . . . , 2n − 1}. Then equation (1.1) is oscil-

latory.

Proof. Let x(t) be a nonoscillatory solution of equation (1.1), say, x(t) > 0 for
t ≥ t0 ≥ 0. From equation (1.1) we see that L2nx(t) ≤ 0 for t ≥ t0 and so
Lix(t), i = 1, 2, . . . , 2n, are eventually of one sign. By Lemma 2.1 there exists a
t1 ≥ t0 and k ∈ {1, 3, . . . , 2n − 1} such that (2.1) holds for t ≥ t1. By applying
Lemma 2.2 there exist a T ≥ t1 and a λ, 0 < λ < 1, such that for all large
t ≥ σ(t) > T/λ

(3.4) x′
(

λσ(t)
)

≥ H1(σ(t), T ; a; k; λ)L
1/α
2n−1x(t).

Define

(3.5) w(t) = ρ(t)
L2n−1x(t)

f
(

x
(

λσ(t)
)) for t ≥ T.

Then for t ≥ T we have

(3.6)

w′(t) = ρ(t)

(

L2n−1x(t)
)′

f
(

x
(

λσ(t)
)) + ρ′(t)

L2n−1x(t)

f
(

x
(

λσ(t)
))

− λρ(t)σ′(t)
f ′
(

x
(

λσ(t)
))

f1−1/α
(

x
(

λσ(t)
))

L2n−1x(t)x′
(

λσ(t)
)

f1+1/α
(

x
(

λσ(t)
))

= −ρ(t)q(t)
f
(

x
(

g(t)
))

f
(

x
(

λσ(t)
)) +

ρ′(t)

ρ(t)
w(t)

− λρ(t)σ′(t)
f ′
(

x
(

λσ(t)
))

f1−1/α
(

x
(

λσ(t)
))

L2n−1x(t)x′
(

λσ(t)
)

f1+1/α
(

x
(

λσ(t)
)) .
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Using (3.1) and (3.4) in (3.6) we obtain

(3.7) w′(t) ≤ −ρ(t)q(t) +
ρ′(t)

ρ(t)
w(t)

− λkρ−1/α(t)σ′(t)H1

(

σ(t), T ; a; k; λ
)

w1+1/α(t) for t ≥ T.

Setting

X =
(

λkρ−1/α(t)σ′(t)H1

(

σ(t), T ; a; k; λ
)

)α/(α+1)

w(t), λ =
α + 1

α
> 1

and

Y =
( α

α + 1

)α(ρ′(t)

ρ(t)

)α(
(

λkρ−1/α(t)σ′(t)H1(σ(t), T ; a; k; λ)
)−α/(α+1)

)α

in Lemma 2.3 we conclude that

ρ′(t)

ρ(t)
w(t) − λkρ−1/α(t)σ′(t)H1

(

σ(t), T ; a; k; λ
)

w1+1/α(t)

≤
1

(λk)α

αα

(1 + α)1+α

(

ρ′(t)
)α+1

(

ρ(t)σ′(t)H1

(

σ(t), T ; a; k; λ
))α for t ≥ T.

Thus it follows from (3.7) that

w′(t) ≤ −ρ(t)q(t) +
1

(λk)α

αα

(1 + α)1+α

(

ρ′(t)
)α+1

(

ρ(t)σ′(t)H1

(

σ(t), T ; a; k; λ
))α , t ≥ T.

Integrating the above inequality from T to t we have

(3.8) 0 < w(t) ≤ w(T ) −

t
∫

T

(

ρ(s)q(s)

−
1

(λk)α

αα

(1 + α)1+α

(

ρ′(s)
)α+1

(

ρ(s)σ′(s)H1

(

σ(s), T ; a; k; λ
))α

)

ds.

Taking lim sup of both sides of (3.8) as t → ∞ and using condition (3.3) we find
that w(t) → −∞ as t → ∞, which is a contradiction. This completes the proof. �

Next we relate the oscillation of equation (1.1) to that of semilinear equations
of type (2.9).

Theorem 3.2. Let conditions (1.2), (3.1) and (3.2) hold. Suppose the semilinear

second-order equation

(3.9)
(

c(t)
(

y′(t)
)α)′

+ q(t) yα(t) = 0

is oscillatory, where

c(t) =
(λk

α
σ′(t)H1

(

σ(t), T ; a; k; λ
)

)−α

.
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Then equation (1.1) is oscillatory.

Proof. Let x(t) be a nonoscillatory solution of equation (1.1), say, x(t) > 0 for
t ≥ t0 ≥ 0. Proceed as in the proof of Theorem 3.1 with ρ(t) = 1 to obtain (3.8)
which takes the form

w′(t) ≤ −ρ(t)q(t) − λkσ′(t)H1

(

σ(t), T ; a; k; λ
)

w1+1/α(t) for t ≥ T.

Applying Lemma 2.4 to the above inequality we conclude that the equation (3.9)
is nonoscillatory, which is a contradiction and completes the proof. �

Theorem 3.3. Let α ≥ 1, conditions (1.2) and (3.2) hold and

(3.10) f(x) sgn x ≥ |x|β for x 6= 0,

where β is the ratio of two positive odd integers. If there exist a function ρ(t) ∈
C1([t0,∞), R+) and a constant λ, 0 < λ < 1 such that for σ(t) > T/λ, T ≥ t0,

(3.11) lim sup
t→∞

t
∫

T

(

ρ(s)q(s)

−

(

ρ′(s)
)2

4λβσ′(s)ρ(s)η(s)H1

(

σ(s), T ; a; k; λ
)

Hα−1
0

(

σ(s), T ; a; k; λ
)

)

ds = ∞,

where Hi, i = 0, 1, are as in Lemma 2.2, k ∈ {1, 3, . . . , 2n − 1} and

(3.12) η(t) =







c1, c1 is any positive constant, when β > α,
1, when β = α,
c2 φβ−α(t, t0, a), c2 is any positive constant, when β < α,

with

(3.13) φ(t, t0, a) =

t
∫

t0

(t − s)n−1

(

sn−1

a(s)

)1/α

ds,

then equation (1.1) is oscillatory.

Proof. Let x(t) be a nonoscillatory solution of equation (1.1), say, x(t) > 0 for
t ≥ t0 > 0. Proceeding as in the proof of Theorem 3.1 we obtain (3.4) and also

(3.14) x(t) ≥ x
(

σ(t)
)

≥ x
(

λσ(t)
)

≥ H0

(

σ(t), T ; a; k; λ
)

L
1/α
2n−1x(t), t ≥ T.

Next there exist a constant b1 > 0 and T 1 ≥ t0 such that L2n−1x(t) ≤ b1 for
t ≥ T 1. Integrating this inequality from T 1 to t one can easily see that there exist
a constant b > 0 and a T1 ≥ T 1 such that

(3.15) x
(

λσ(t)
)

≤ x(t) ≤ bφ(t, T 1; a) for t ≥ T1.
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Defining the function w(t) by (3.5) and proceeding as in the proof of Theorem 3.1
to obtain (3.6) with f(x) replaced by xβ , we obtain

(3.16) w′(t) ≤ −ρ(t)q(t)+
ρ′(t)

ρ(t)
w(t)−λβρ(t)σ′(t)

L2n−1x(t)x′
(

λσ(t)
)

xβ+1
(

λσ(t)
) for t ≥ T.

Using (3.4) and (3.14) in inequality (3.16) we find

(3.17) w′(t) ≤ −ρ(t)q(t) +
ρ′(t)

ρ(t)
w(t)

−λβ
σ′(t)

ρ(t)
H1

(

σ(t), T ; a; k; λ
)

Hα−1
0

(

σ(t), T ; a; k; λ
)

xβ−α
(

λσ(t)
)

w2(t), t ≥ T.

Next we consider the following three cases:

Case 1. If β > α, then there exist a constant γ1 and a T2 ≥ T such that

(3.18) x
(

λσ(t)
)

≥ γ1 for t ≥ T2.

Thus inequality (3.17) takes the form

(3.19) w′(t) ≤ −ρ(t)q(t) +
ρ′(t)

ρ(t)
w(t)

− λβγβ−α
1

σ′(t)

ρ(t)
H1

(

σ(t), T ; a; k; λ
)

Hα−1
0

(

σ(t), T ; a; k; λ
)

w2(t), t ≥ T2.

Case 2. If β = α, then inequality (3.17) becomes

(3.20) w′(t) ≤ −ρ(t)q(t) +
ρ′(t)

ρ(t)
w(t)

− λβ
σ′(t)

ρ(t)
H1

(

σ(t), T ; a; k; λ
)

Hα−1
0

(

σ(t), T ; a; k; λ
)

w2(t), t ≥ T.

Case 3. If β < α, then by (3.15) we get

(3.21) xβ−α
(

λσ(t)
)

≥ γ2φ
β−α(t, T 1; a), γ2 = bβ−α, t ≥ T1,

and inequality (3.17) becomes

(3.22) w′(t) ≤ −ρ(t)q(t) +
ρ′(t)

ρ(t)
w(t)

−λβγ2φ
β−α(t, T ; a)H1

(

σ(t), T ; a; k; λ
)

Hα−1
0

(

σ(t), T ; a; k; λ
)

w2(t), t ≥ T1.

Choose T ∗ = max{T, T1, T2} and combine the inequalities (3.19), (3.20) and
(3.22) to obtain
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(3.23) w′(t) ≤ −ρ(t)q(t) +
ρ′(t)

ρ(t)
w(t)

−λβ
σ′(t)

ρ(t)
η(t)H1

(

σ(t), T ; a; k; λ
)

Hα−1
0

(

σ(t), T ; a; k; λ
)

w2(t), t ≥ T ∗

= −ρ(t)q(t) −

(

(

λβ
σ′(t)

ρ(t)
η(t)H1

(

σ(t), T ; a; k; λ)Hα−1
0 (σ(t), T ; a; k; λ

)

)1/2

w(t)

−
ρ′(t)

2ρ(t)
(

λβ
σ′(t)

ρ(t)
η(t)H1

(

σ(t), T ; a; k; λ
)

Hα−1
0

(

σ(t), T ; a; k; λ
)

)1/2

)2

+

(

ρ′(t)
)2

4λβσ′(t)ρ(t)η(t)H1

(

σ(t), T ; a; k; λ
)

Hα−1
0

(

σ(t), T ; a; k; λ
)

(3.24) ≤ −

(

ρ(t)q(t)

−

(

ρ′(t)
)2

4λβσ′(t)ρ(t)η(t)H1

(

σ(t), T ; a; k; λ
)

Hα−1
0

(

σ(t), T ; a; k; λ
)

)

, t ≥ T ∗.

Integrating (3.24) from T ∗ to t we have

0 < w(t) ≤ w(T ∗) −

t
∫

T∗

(

ρ(s)q(s)

−

(

ρ′(s)
)2

4λβσ′(s)ρ(s)η(s)H1

(

σ(s), T ; a; k; λ
)

Hα−1
0

(

σ(s), T ; a; k; λ
)

)

ds.

Taking lim sup of both sides of the above inequality as t → ∞ and by condition
(3.11) we see that w(t) → −∞ as t → ∞, which is a contradiction and completes
the proof. �

In the following result we compare the oscillation of equation (1.1) with that
of linear second-order ordinary differential equation.

Theorem 3.4. Let α ≥ 1, conditions (1.2) and (3.2) hold and (3.10) hold. Suppose

the linear second-order equation

(3.25)
( 1

r(t)
y′(t)

)′

+ q(t)y(t) = 0

is oscillatory, where r(t) = λβσ′(t)η(t)H1

(

σ(t), T ; a; k; λ
)

Hα−1
0

(

σ(t), T ; a; k; λ
)

.
Then equation (1.1) is oscillatory.

Proof. Let x(t) be a nonoscillatory solution of equation (1.1), say, x(t) > 0 for
t ≥ t0 ≥ 0. Proceed as in the proof of Theorem 3.3 with ρ(t) = 1 to obtain (3.23)
which takes the form

w′(t) ≤ −q(t)− λβσ′(t)η(t)H1

(

σ(t), T ; a; k; λ
)

Hα−1
0

(

σ(t), T ; a; k; λ
)

w2(t), t ≥ T ∗.
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Applying Lemma 2.5 to the above inequality we find that the equation (3.25) is
nonoscillatory, which is a contradiction. This completes the proof. �

Next we present the following oscillation result for equation (1.1) when 0 <
α ≤ 1.

Theorem 3.5. Let 0 < α ≤ 1, conditions (1.2), (3.2) and (3.10) hold. Moreover

assume that there exist a function ρ(t) ∈ C1
(

[t0,∞), R+
)

and a constant λ, 0 <
λ < 1, such that for σ(t) > T/λ, T ≥ t0,

(3.26) lim sup
t→∞

t
∫

T

(

ρ(s)q(s) −

(

ρ′(s)
)2

Q1−1/α(s)

4λβσ′(s)ξ(s)H1

(

σ(s), T ; a; k; λ
)

)

ds = ∞,

where H1 is as in Lemma 2.2, k ∈ {1, 3, . . . , 2n − 1} and Q(t) =
∞
∫

t

q(s) ds and

(3.27) ξ(t) =











c1, c1 is any positive constant, when β > α,

1, when β = α,

c2φ
β/α−1(t, t0; a), c2 is any positive constant, when β < α,

then equation (1.1) is oscillatory.

Proof. Let x(t) be a nonoscillatory solution of equation (1.1), say, x(t) > 0 for
t ≥ t0 > 0. Define the function w(t) by (3.5) with f(x) = xβ and proceed as in the
proof of Theorems 3.1 and 3.3 to obtain (3.4), (3.14) – (3.16) for t ≥ T. Using (3.4)
in (3.16) one can easily find that

(3.28) w′(t) ≤ −ρ(t)q(t) +
ρ′(t)

ρ(t)
w(t)

− λβσ′(t)ρ−1/α(t)w2(t)w1/α−1(t)H1

(

σ(t), T ; a; k; λ
)

xβ/α−1
(

λσ(t)
)

.

It is easy to see that

(3.29) w(t) ≥ ρ(t)Q(t) for t ≥ T.

Using (3.29) in (3.28) we obtain

(3.30) w′(t) ≤ −ρ(t)q(t) +
ρ′(t)

ρ(t)
w(t)

−
λβσ′(t)

ρ(t)
Q1/α−1(t)H1

(

σ(t), T ; a; k; λ
)

w2(t)xβ/α−1
(

λσ(t)
)

, t ≥ T.

The rest of the proof is similar to that of Theorem 3.3 and hence is omitted. �

In the following result we relate the oscillation of equation (1.1) for 0 < α ≤ 1
with that of linear second-order equations.
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Theorem 3.6. Let 0 < α ≤ 1, conditions (1.2), (3.2) and (3.10) hold. Suppose the

linear second-order equation

(3.31)
( 1

h(t)
z′(t)

)′

+ q(t)z(t) = 0

is oscillatory, where h(t) = λβσ′(t)ξ(t)Q1/α−1(t)H1

(

σ(t), T ; a; k; λ
)

and ξ(t) is

given by (3.27). Then equation (1.1) is oscillatory.

Proof. Let x(t) be a nonoscillatory solution of equation (1.1), say, x(t) > 0 for
t ≥ t0 > 0. Proceeding as in the proof of Theorem 3.5 with ρ(t) = 1 to obtain the
inequality (3.30) which takes the form

w′(t) ≤ −q(t) − λβσ′(t)ξ(t)Q1/α−1(t)H1

(

σ(t), T ; a; k; λ
)

w2(t), t ≥ T.

The rest of the proof is similar to that of Theorem 3.4 and hence is omitted. �

For each t ≥ t0 we let g(t) ≤ t and define µ(t) = sup{s ≥ t0 : g(s) ≤ t}.
Clearly µ(t) ≥ t and g ◦ µ(t) = t. Now we are ready to prove the following result.

Theorem 3.7. Let g(t) ≤ t for t ≥ t0 and conditions (1.2) and (3.10) hold with

α = β. If for all large T ≥ t0, k ∈ {1, 3, . . . , 2n−1} and some constant λ, λ ∈ (0, 1),

(3.32) lim sup
t→∞

Hα
0 (t, T ; a; k; λ)

∞
∫

µ(t)

q(s) ds > 1,

then equation (1.1) is oscillatory.

Proof. Let x(t) be a nonoscillatory solution of equation (1.1), say, x(t) > 0 for
t ≥ t0 ≥ 0. Integrating equation (1.1) from t(≥ t0) to u(≥ t) and letting u → ∞
we obtain

L2n−1x(t) ≥
∞
∫

t

q(s)xα
(

g(s)
)

ds, t ≥ t0.

By Lemma 2.2 there exist a T ≥ t0, λ ∈ (0, 1) and k ∈ {1, 3, . . . , 2n− 1} such that

(3.33) x(t) ≥ H0

(

t, T ; a; k; λ
)

L
1/α
2n−1x(t) for t ≥ T.

Thus we have

xα(t) ≥ Hα
0 (t, T ; a; k; λ)L2n−1x(t)

≥ Hα
0 (t, T ; a; k; λ)

∞
∫

t

q(s)xα
(

g(s)
)

ds, t ≥ T.

Now by µ(t) ≥ t and the fact that x′(t) > 0 and g(s) ≥ t for s ≥ µ(t) it follows
that

(3.34)

xα(t) ≥ Hα
0 (t, T ; a; k; λ)

(

∞
∫

µ(t)

q(s)xα
(

g(s)
)

ds

)

≥ Hα
0 (t, T ; a; k; λ)xα(t)

(

∞
∫

µ(t)

q(s) ds

)

.
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Dividing both sides of (3.34) by xα(t) we have

(3.35) Hα
0 (t, T ; a; k; λ)

∞
∫

µ(t)

q(s) ds ≤ 1, t ≥ T.

Taking lim sup of both sides of (3.35) as t → ∞ we obtain a contradiction to
condition (3.32). This completes the proof. �

In the case of an advanced equation (1.1), i.e., g(t) ≥ t for t ≥ t0, Theorem
3.7 takes the following form.

Theorem 3.8. Let g(t) ≥ t for t ≥ t0 and conditions (1.2) and (3.10) hold with

α = β. If for all large T ≥ t0, k ∈ {1, 3, . . . , 2n−1} and some constant λ, λ ∈ (0, 1),

(3.36) lim sup
t→∞

Hα
0 (t, T ; a; k; λ)

∞
∫

t

q(s) ds > 1,

then equation (1.1) is oscillatory.

Next we present the following result when

(3.37) Q(t) :=
∞
∫

t

q(s) ds < ∞ for t ≥ t0.

Theorem 3.9. Let conditions (1.2), (3.2) with σ′(t) ≥ 0 for t ≥ t0, (3.10) with

α = β and (3.37) hold. If for k ∈ {1, 3, . . . , 2n−1}, some constant λ, λ ∈ (0, 1) and

all large T ≥ t0 with σ(t) > T/λ,

(3.38) lim sup
t→∞

H0

(

σ(t), T ; a; k; λ
)

(

Q(t)

+ αλ
∞
∫

t

H1

(

σ(t), T ; a; k; λ
)

σ′(s)Q(α+1)/α(s) ds

)1/α

> 1,

then equation (1.1) is oscillatory.

Proof. Let x(t) be a nonoscillatory solution of equation (1.1), say, x(t) > 0 for
t ≥ t0 ≥ 0. Define w(t) as in (3.5) with ρ(t) = 1 and f(x) = xα and as in the proof
of Theorem 3.1 we obtain (3.7) which takes the form

(3.39) w′(t) ≤ −q(t) − αλσ′(t)H1

(

σ(t), T ; a; k; λ
)

w1+1/α(t), t ≥ T ≥ t0.

Integrating (3.39) from t (≥ T ) to u(≥ t) and letting u → ∞ we find that

(3.40)
L

1/α
2n−1x(t)

x
(

λσ(t)
) ≥

(

Q(t) + αλ
∞
∫

t

H1

(

σ(s), T ; a; k; λ
)

w1+1/α(s) ds

)1/α

, t ≥ T.

Now one can easily see that

(3.41) w(t) ≥ Q(t) for t ≥ T.
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Using (3.33) with t = σ(t) and (3.41) in (3.40) we have

1 ≥ H0

(

σ(t), T ; a; k; λ
)

(

Q(t) + αλ
∞
∫

t

H1

(

σ(s), T ; a; k; λ
)

Q1+1/α(s) ds

)1/α

.

Taking lim sup of both sides of the above inequality as t → ∞ we obtain a contra-
diction to condition (3.38). This completes the proof. �

Next we have the following comparison result.

Theorem 3.10. Let conditions (1.2), (3.2) with σ′(t) ≥ 0 for t ≥ t0 and (3.10)
hold. If for k ∈ {1, 3, . . . , 2n− 1}, some constant λ, λ ∈ (0, 1), and all large T ≥ t0
with σ(t) > T/λ, every solution of the first-order delay differential equation

(3.42) y′(t) + q(t)Hβ
0

(

σ(t), T ; a; k; λ
)

yβ/α
(

σ(t)
)

= 0

is oscillatory, then equation (1.1) is oscillatory.

Proof. Let x(t) be a nonoscillatory solution of equation (1.1), say, x(t) > 0 for
t ≥ t0 ≥ 0. As in the proof of Theorem 3.7 we obtain (3.33) for t ≥ T. There exists
a T0 ≥ T such that

(3.43) x
(

σ(t)
)

≥ H0

(

σ(t), T ; a; k; λ
)

L
1/α
2n−1x

(

σ(t)
)

, t ≥ T0.

Using condition (3.10) and (3.43) in equation (1.1) we have

−
d

dt
L2n−1x(t) = q(t)f

(

x
(

g(t)
))

≥ q(t)xβ
(

σ(t)
)

≥ q(t)Hβ
0

(

σ(t), T ; a; k; λ
)

L
β/α
2n−1x

(

σ(t)
)

, t ≥ T0.

Set y(t) = L2n−1x(t) > 0, t ≥ T0. We get

(3.44) y′(t) + q(t)Hβ
0

(

σ(t), T ; a; k; λ
)

yβ/α
(

σ(t)
)

≤ 0, t ≥ T0.

Integrating the inequality (3.44) from t(≥ T0) to u and letting u → ∞ we have

y(t) ≥
∞
∫

t

q(s)Hβ
0

(

σ(t), T ; a; k; λ
)

yβ/α
(

σ(s)
)

ds, t ≥ T0.

As in [17] it is easy to conclude that there exists a positive solution y(t) of equa-
tion (3.42) with lim

t→∞
y(t) = 0, which contradicts the fact that equation (3.42) is

oscillatory. This completes the proof. �

The following corollary is immediate.

Corollary 3.1. Let conditions (1.2), (3.2) with σ′(t) ≥ 0 for t ≥ t0 and (3.10)
hold. If for k ∈ {1, 3, . . . , 2n− 1}, some constant λ, λ ∈ (0, 1), and all large T ≥ t0
with σ(t) > T/λ, either

(3.45) lim inf
t→∞

t
∫

σ(t)

q(s)Hα
0

(

σ(s), T ; a; k; λ
)

ds >
1

e
, when α = β,
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or

(3.46) lim
t→∞

t
∫

q(s)Hβ
0

(

σ(s), T ; a; k; λ
)

ds = ∞, when β < α

holds, then equation (1.1) is oscillatory.

Remark 3.1. We note that some of our results of this section are new even when α = 1.

4. SUFFICIENT CONDITIONS

In this section we present some criteria for the oscillation of equation (1.1)
when the function f satisfies either

(4.1)

±∞
∫

du

f1/α(u)
< ∞

or

(4.2)

∫

±0

du

f(u1/α)
< ∞.

Theorem 4.1. Let α ≥ 1 and conditions (1.2), (3.2) and (4.1) hold. Moreover

assume that there exist a function ρ ∈ C1
(

[t0,∞
)

, R+), a constant λ, λ ∈ (0, 1),
and k ∈ {1, 3, . . . , 2n − 1} such that for all large T ≥ t0 with σ(t)T/λ

(4.3) ρ′(t) ≥ 0 and

(

(ρ′(t))1/α

H1

(

σ(t), T ; a; k; λ
)

)′

≤ 0, t ≥ T.

If

(4.4)
∞
∫

ρ(s)q(s) ds = ∞,

then equation (1.1) is oscillatory.

Proof. Let x(t) be a nonoscillatory solution of equation (1.1), say, x(t) > 0 for
t ≥ t0 ≥ 0. As in the proof of Theorem 3.1 we define the function w(t) as in (3.5)
and proceed to obtain (3.4) and (3.6), i.e.,

(4.5) w′(t) ≤ −ρ(t)q(t) + ρ′(t)
L2n−1x(t)

f
(

x
(

λσ(t)
)) , t ≥ T ≥ t0.

Using (3.4) in (4.5) we get

(4.6) w′(t) ≤ −ρ(t)q(t) +
ρ′(t)

f
(

x
(

λσ(t)
))

(

x′
(

λσ(t)
)

λσ′(t)

H1

(

σ(t), T ; a; k; λ
)

λσ′(t)

)α
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= −ρ(t)q(t) +

((

(

ρ′(t)
)1/α

H1

(

σ(), T ; a; k; λ
)

λσ′(t)

)

x′
(

λσ(t)
)

λσ′(t)

f1/α
(

x
(

λσ(t)
))

)α

, t ≥ T1 ≥ T.

Integrating (4.6) from T1 to t we obtain

(4.7) w(t) ≤ w(T1) −
t
∫

T1

ρ(s)q(s) ds

+

t
∫

T1

((

(

ρ′(s)
)1/α

H1

(

σ(s), T ; a; k; λ
)

λσ′(s)

)

x′
(

λσ(s)
)

λσ′(s)

f1/α
(

x
(

λσ(s)
))

)α

ds

≤ w(T1) −
t
∫

T1

ρ(s)q(s) ds

+

(

t
∫

T1

(

(

ρ′(s)
)1/α

H1

(

σ(s), T ; a; k; λ
)

λσ′(s)

)

x′
(

λσ(s)
)

λσ′(s)

f1/α
(

x
(

λσ(s)
)) ds

)α

.

However, by the Bonnet second mean-value theorem, for a fixed t ≥ T1 and for
some ξ ∈ [T1, t], we have

(4.8)

t
∫

T1

(

(

ρ′(s)
)1/α

H1

(

σ(s), T ; a, k; λ
)

λσ′(s)

)(

x′
(

λσ(s)
)

λσ′(s)

f1/α
(

x
(

λσ(s)
))

)

ds

=

(

(

ρ′(T1)
)1/α

H1

(

σ(T1), T ; a; k; λ
)

λσ′(T1)

)

x
(

λσ(t)
)

∫

x
(

λσ(T1)
)

du

f1/α(u)

≤

(

(

ρ′(T1)
)1/α

H1

(

σ(T1), T ; a; k; λ
)

λσ′(T1)

)

∞
∫

x
(

λσ(T1)
)

du

f1/α(u)
:= M,

where M is a positive constant.

Using (4.8) in (4.7) we have

(4.9)
t
∫

T1

ρ(s)q(s) ds ≤ −w(t) + w(T1) + Mα.

Letting t → ∞ in (4.9), we arrive at a contradiction to condition (4.4) and this
completes the proof. �

The following result is immediate.

Theorem 4.2. Let condition (4.3) in Theorem 4.1 be replaced by

(4.10) ρ′(t) ≥ 0 for t ≥ t0 and

∞
∫

∣

∣

∣

∣

∣

(

(

ρ′(s)
)1/α

σ′(s)H1

(

σ(s), T ; a; k; λ
)

)′
∣

∣

∣

∣

∣

ds < ∞.
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Then the conclusion of Theorem 4.1 holds.

Next we present the following oscillation criteria for equation (1.1) when
condition (3.37) is satisfied.

Theorem 4.3. Let conditions (1.2), (3.2) with σ′(t) ≥ 0 for t ≥ t0, (3.37) and (4.1)
hold. If for all large T ≥ t0, some constant λ, λ ∈ (0, 1) and k ∈ {1, 3, . . . , 2n− 1}
such that for σ(t) > T/λ,

(4.11)
∞
∫

H1

(

σ(s), T ; a; k; λ
)

σ′(s)Q1/α(s) ds = ∞,

then equation (1.1) is oscillatory.

Proof. Let x(t) be a nonoscillatory solution of equation (1.1), say, x(t) > 0 for
t ≥ t0 ≥ 0. Define the function w(t) as in (3.5) with ρ(t) = 1. Then we obtain

t
∫

t1

q(s) ds ≤
L2n−1x(t1)

f
(

x
(

λσ(t1)
))

and hence for any t ≥ t1

(4.12) Q1/α(t) ≤
L

1/α
2n−1x(t)

f1/α
(

x
(

λσ(t)
)) .

Using (3.4) in (4.12) we obtain

(4.13) H1

(

σ(t), T ; a; k; λ
)

λσ′(t)Q1/α(t) ≤
x′
(

λσ(t)
)

λσ′(t)

f1/α
(

x
(

λσ(t)
))

for σ(t) > T/λ, T ≥ t1.

Integrating (4.13) from T to t we get

λ

t
∫

T

H1

(

σ(s), T ; a; k; λ
)

σ′(s)Q1/α(s) ds ≤

x
(

λσ(t)
)

∫

x
(

λσ(T )
)

du

f1/α(u)

≤

∞
∫

x
(

λσ(T )
)

du

f1/α(u)
< ∞,

which contradicts condition (4.11) and completes the proof. �

Theorem 4.4. Let conditions (1.2), (3.1), (3.2) with σ′(t) ≥ 0 for t ≥ t0, (3.37) and

(4.1) hold. If for all large T ≥ t0 with σ(t) > T/λ for some constant λ, λ ∈ (0, 1),
and k ∈ {1, 3, . . . , 2n − 1},
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(4.14)
∞
∫

H1

(

σ(s), T ; a; k; λ
)

σ′(s)

(

Q(s)

+kλ
∞
∫

s

H1

(

σ(u), T ; a; k; λ
)

σ′(u)Q1+1/α(u)du

)1/α

ds = ∞,

then equation (1.1) is oscillatory.

Proof. Let x(t) be a nonoscillatory solution of equation (1.1), say, x(t) > 0 for
t ≥ t0 ≥ 0. Define the function w(t) as in (3.5) with ρ(t) = 1. Then we obtain

(4.15) w′(t) ≤ −q(t) −
L2n−1x(t)

f2
(

x
(

λσ(t)
)) λσ′(t)x′

(

λσ(t)
)

, t ≥ t1 ≥ t0.

Using (3.4) and (3.1) in (4.15) we get

(4.16) w′(t) ≤ −q(t) − λkσ′(t)H1

(

σ(t), T ; a; k; λ)w1+1/α
)

(t), t ≥ T ≥ t1.

Integrating (4.16) from t(≥ T ) to u(≥ t) and letting u → ∞ we obtain

(4.17) L2n−1x(t) ≥ f
(

x
(

λσ(t)
))

(

Q(t)

+ λk
∞
∫

t

H1

(

σ(s), T ; a; k; λ
)

σ′(s)w1+1/α(s) ds

)

, t ≥ T,

and

(4.18) w(t) ≥ Q(t), t ≥ T.

Using (3.4) and (4.18) in (4.17) we find

x′
(

λσ(t)
)

λσ′(t)

f1/α
(

x
(

λσ(t)
)) ≥ λσ′(t)H1

(

σ(t), T ; a; k; λ
)

(

Q(t)

+ λk
∞
∫

t

H1

(

σ(s), T ; a; k; λ
)

σ′(s)Q1+1/α(s)ds

)1/α

.

Integrating the above inequality from T to t and using condition (4.1) we obtain a
contradiction to condition (4.14) and complete the proof. �

Next we present the following theorem when condition (4.2) holds.

Theorem 4.5. Let conditions (1.2), (3.2) with σ′(t) ≥ 0 for t ≥ t0 and (4.2) hold.

Moreover assume that

(4.19) −f(−xy) ≥ f(xy) ≥ f(x)f(y) for xy > 0.

If for all large T ≥ t0 with σ(t) > T/λ for some constant λ, λ ∈ (0, 1) and

k ∈ {1, 3, . . . , 2n − 1},

(4.20)
∫∞

q(s)f
(

H0

(

σ(s), T ; a; k; λ
))

ds = ∞,
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then equation (1.1) is oscillatory.

Proof. Let x(t) be a nonoscillatory solution of equation (1.1), say, x(t) > 0 for
t ≥ t0 ≥ 0. As in the proof of Theorem 3.10 there exists a T0 ≥ T such that (3.43)
holds for t ≥ T0.

Using (3.43) and (4.19) in equation (1.1) we get

(4.21) −L2nx(t) = q(t)f
(

x
(

g(t)
))

≥ q(t)f
(

x
(

σ(t)
))

≥ q(t)f
(

H0

(

σ(t), T ; a; k; λ
)

L
1/α
2n−1x(t)

)

≥ q(t)f
(

H0

(

σ(t), T ; a; k; λ
))

f
(

L
1/α
2n−1x(t)

)

, t ≥ T0.

Let u(t) = L2n−1x(t) for t ≥ T0. We have

(4.22) −
du(t)

dt
≥ q(t)f

(

H0

(

σ(t), T ; a; k; λ
))

f
(

u1/α(t)
)

, t ≥ T0.

Dividing both sides of (4.22) by f
(

u1/α(t)
)

and integrating from T0 to t we have

t
∫

T0

q(s)f
(

H0

(

σ(s), T ; a; k; λ
))

ds ≤

T0
∫

t

u′(s) ds

f
(

u1/α(s)
) =

u(T0)
∫

u(t)

du

f
(

u1/α
) .

Letting t → ∞ we conclude that

∞
∫

T0

q(s)f
(

H0

(

σ(s), T ; a; k; λ
))

ds ≤

u(T0)
∫

0

du

f(u1/α)
< ∞ ,

which contradicts condition (4.20). This completes the proof. �

Theorem 4.6. Let conditions (1.2), (3.2) with σ′(t) ≥ 0 for t ≥ t0, (3.10) with

β < α and (3.37) hold. If for all constant c > 0, T ≥ t0 with σ(t) > T/λ for some

constant λ, λ ∈ (0, 1) and k ∈ {1, 3, . . . , 2n − 1},

(4.23) lim sup
t→∞

Q1/β(t)H0

(

σ(t), T ; a; k; λ
)

(

1

+
c

Q(t)

∞
∫

t

H1

(

σ(s), T ; a; k; λ
)

σ′(s)Q1+1/β(s) ds

)1/α

= ∞,

then equation (1.1) is oscillatory.

Proof. Let x(t) be a nonoscillatory solution of equation (1.1), say, x(t) > 0 for
t ≥ t0 ≥ 0. Define w(t) = L2n−1x(t)/xβ

(

λσ(t)
)

for t ≥ t1 ≥ t0. Then for t ≥ t1 we
have

w′(t) ≤ −q(t) − λβσ′(t)
L2n−1x(t)

xβ+1
(

λσ(t)
)x′
(

λσ(t)
)

.
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As in the proof of Theorems 3.1 and 3.10 we obtain (3.4) and (3.43), respectively,
for t ≥ T0 ≥ T ≥ t1,

(4.24) w′(t) ≤ − q(t) − λβσ′(t)w1+1/α(t)xβ/α−1
(

λσ(t)
)

, t ≥ T0.

Integrating (4.24) from t (≥ T0) to u and letting u → ∞ we find

(4.25) L2n−1x(t) ≥ xβ
(

λσ(t)
)

(

Q(t)

+ λβ
∞
∫

t

σ′(s)H1

(

σ(s), T ; a; k; λ
)

w1+1/α(s)xβ/α−1
(

λσ(s)
)

ds

)

, t ≥ T0,

and
w(t) ≥ Q(t), t ≥ T0.

There exist a constant c1 > 0 and a T1 ≥ T0 such that

(4.26) L2n−1x(t) ≤ c1, t ≥ T1.

Now for t ≥ T1 it follows from (4.25) and (4.26) that

xβ/α
(

λσ(t)
)

≤ c1Q
1/α(t) or x

(

λσ(t)
)

≤ c
α/β
1 Q−1/β(t)

and hence

(4.27) xβ/α−1
(

λσ(t)
)

≥ c
1−α/β
1 Q1/β−1/α(t), t ≥ T1.

Using (4.27) in (4.25) yields

(4.28) L
1/α
2n−1x(t) ≥ xβ/α

(

λσ(t)
)

(

Q(t)

+ λβc
1−α/β
1

∞
∫

t

H1

(

σ(s), T ; a; k; λ
)

σ′(s)Q1+1/β(s) ds

)1/α

.

Using (3.43) in (4.28) we obtain for T ≥ T1

x
(

λσ(t)
)

≥ H0

(

σ(t), T ; a; k; λ
)

L
1/α
2n−1x(t)

≥ xβ/α
(

λσ(t)
)

H0

(

σ(t), T ; a; k; λ
)

(

Q(t)

+ λβc
β/α−1
1

∞
∫

t

H1

(

σ(s), T ; a; k, λ
)

σ′(s)Q1+1/β(s) ds

)1/α

or

x1−β/α
(

λσ(t)
)

≥ H0

(

σ(t), T ; a; k; λ
)

Q1/α(t)

(

1 +

λβc
1−α/β
1

Q(t)

∞
∫

t

H1

(

σ(s), T ; a; k, λ
)

σ′(s)Q1+1/β(s) ds

)1/α

.
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Using (4.27) in the above inequality one can easily see that

c
α/β−1
1 ≥ Q1/β(t)H0

(

σ(t), T ; a; k; λ
)

(

1

+
λβc

1−α/β
1

Q(t)

∞
∫

t

H1

(

σ(s), T ; a; k, λ
)

σ′(s)Q1+1/β(s) ds

)1/α

, t ≥ T1.

Taking lim sup of both sides of this inequality as t → ∞ we obtain a contradiction
to condition (4.23). This completes the proof. �

5. NECESSARY AND SUFFICIENT CONDITIONS

In this section we are interested to establish some necessary and sufficient
conditions for the oscillation of equation (1.1). Here for t ≥ T ≥ t0 we let

H∗(t, T ; a) =

t
∫

T

(t − u)n−1

(n − 1)!

(

(u − T )n−1

(n − 1)! a(u)

)1/α

du.

Theorem 5.1. Let condition (1.2) hold, f(x) sgnx = |x|β for x 6= 0 and β <
α, g(t) ≤ t and g′(t) ≥ 0 for t ≥ t0. Equation (1.1) is oscillatory if and only if for

all large T ≥ t0

(5.1)
∞
∫

q(s)Hβ
∗

(

g(s), T ; a
)

ds = ∞.

Proof. Let x(t) be a nonoscillatory solution of equation (1.1), say, x(t) > 0 for
t ≥ t0 ≥ 0. The proof of the “if” part is similar to that of Theorem 4.5 and we
omit the details. To prove the “only if” part it suffices to assume that for all large
T ≥ t0

(5.2)
∞
∫

q(s)Hβ
∗

(

g(s), T ; a
)

ds < ∞

and to show the existence of a nonoscillatory solution of equation (1.1). Here we
give an outline of the proof.

Let c > 0 be an arbitrary constant and choose T ≥ T sufficiently large so
that

(5.3)
∞
∫

T

q(s)Hβ
∗

(

g(s), T ; a
)

ds ≤ 2−1/2c1−β/α.

Define the set X by

(5.4) X =
{

x ∈ C[T,∞) : c1H∗(t, T ; a) ≤ x(t) ≤ c2H∗(t, T ; a), t ≥ T
}

which is a closed convex subset of the locally convex space C[T,∞) of continuous
functions on [T,∞) equipped with the topology of uniform convergence on compact
subintervals of [T,∞), where c1 and c2 denote the positive constants

(5.5) c1 = c1/α and c2 = (2c)1/α.
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Consider the integral operator T defined by

(5.6) T x(t) =

t
∫

T

(t − s)n−1

(n − 1)!

(

1

a(s)

(

c
(s − T )n−1

(n − 1)!

+

s
∫

T

(s − u)n−2

(n − 2)!

∞
∫

u

q(τ)xβ
(

g(τ)
)

dτdu

)1/α
)

ds, t > T.

Using (5.3) and (5.5) we see that T maps X into itself. If {xj} is a sequence in
X converging to x0 in C[T,∞), then from the Lebesgue Monotone Convergence
Theorem it follows that {T xj} converges to T x0 in C[T,∞) so that T is a continu-
ous mapping. Since T (X) and T ′(X) = {(T x)′(t) : x ∈ X} are locally bounded in
[T,∞), the Ascoli–Arzela Theorem implies that T (X) is relatively compact in
C[T,∞). Thus all the hypotheses of Schauder–Tychonov fixed point theorem
are satisfied and so there exists an element x ∈ X such that x = T x. Differentiating
the integral equation x = T x we conclude that x = x(t) is a positive solution of
equation (1.1) on [T,∞) such that lim

t→∞
x(t)/H∗(t, T ; a) = c. This completes the

proof. �

Before we prove the next result we state the following theorem.

Theorem 5.2. Let condition (1.2) hold. If

(5.7)

∞
∫

sn−1

(

1

a(s)

∞
∫

s

un−1q(u) du

)1/α

ds = ∞,

then equation (1.1) is oscillatory.

Proof. The proof is immediate. �

Theorem 5.3. Let condition (1.2) hold, f(x) sgnx = |x|β for x 6= 0 and β >
α, g(t) ≤ t and g′(t) ≥ 0 for t ≥ t0. Equation (1.1) is oscillatory if and only if

(5.7) holds.

Proof. Let x(t) be a nonoscillatory solution of equation (1.1), say, x(t) > 0 for
t ≥ t0 ≥ 0. The proof of the “if” part is the same as that of Theorem 5.2 and hence
is omitted. The “only if” part is proved as follows: Let c > 0 be given arbitrarily
and choose T ≥ t0 so that

∞
∫

T

tn−1

(n − 1)!

(

1

a(t)

∞
∫

t

(s − t)n−1

(n − 1)!
q(s) ds

)1/α

dt <
1

2
c1−β/α.

We define the set Y and the mapping S by

Y =
{

x ∈ C[T,∞) :
c

2
≤ x(t) ≤ c, t ≥ T

}
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and

Sx(t) = c −

∞
∫

t

(s − t)n−1

(n − 1)!

(

1

a(s)

∞
∫

s

(u − s)n−1

(n − 1)!
q(u)xβ

(

g(u)
)

du

)1/α

ds, t ≥ T,

respectively. Then it is easy to show that S maps Y into itself, that S is a continuous
mapping and S(Y ) is relatively compact in C[T,∞). Therefore by the Schauder–
Tychonov fixed point theorem there exists an element x ∈ Y such that x = Sx.
It is clear that the fixed point x = x(t) gives a positive solution of equation (1.1)
on [T,∞) such that lim

t→∞
x(t) = c. This completes the proof. �

6. MORE COMPARISON RESULTS

In this section we compare the inequality

(6.1) L2nx(t) + q(t)f
(

x
(

g(t)
))

≤ 0 (≥ 0)

with equation (1.1). In fact we establish the following theorem.

Theorem 6.1. Let condition (1.2) hold. If inequality (4.1) has an eventually

positive (negative) solution, then equation (1.1) also has an eventually positive

(negative) solution.

Proof. Let x(t) be an eventually positive solution of inequality (6.1), say, x(t) > 0
for t ≥ t0 ≥ 0. According to Lemma 2.1 there exist a t1 ≥ t0 and an integer
k ∈ {1, 3, . . . , 2n − 1} such that inequalities (2.1) hold. Here we distinguish the
following three cases: (I) k = 2n− 1, (II) n + 1 ≤ k ≤ 2n− 3, (III) 1 ≤ k ≤ n.
For this, when we integrate inequality (6.1) from t to u(≥ t ≥ t1) and let u → ∞,
we have

(6.2) L2n−1x(t) ≥
∞
∫

t

q(s)f
(

x
(

g(s)
))

ds.

Case (I) Let k = 2n − 1. Integrating (6.2) (n − 1) times from t1 to t we obtain

(6.3) x(n)(t) ≥

(

1

a(t)

t
∫

t1

sn+1
∫

t1

· · ·
s2n−2
∫

t1

∞
∫

s2n−1

q(s)f
(

x
(

g(s)
))

dsds2n−1 · · · dsn+1

)1/α

:= Φ1

(

t; x
(

g(t)
))

for t ≥ t1

from which after integrating n times from t1 to t it follows that

(6.4) x(t) ≥ x(t1) +
t
∫

t1

s1
∫

t1

· · ·
sn−1
∫

t1

Φ1(sn, x) dsndsn−1 · · ·ds1

:= x(t1) + Ψ1

(

t; x
(

g(t)
))

for t ≥ t1.
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Case (II) Let n + 1 ≤ k ≤ 2n − 3. Integrating (6.2) (2n − k − 1) times from t to
u(≥ t) and letting u → ∞ yield

(−1)2n−k−1Lkx(t) ≥
∞
∫

t

∞
∫

s2n−k−1

· · ·
∞
∫

s2n−1

q(s)f
(

x
(

g(s)
))

dsdds2n−1 · · · ds2n−k−1.

Integrating this inequality (k − n) times from t1 to t we have

(6.5) x(n)(t) ≥

(

1

a(t)

t
∫

t1

sn+1
∫

t1

· · ·
s2n−k−3
∫

t1

∞
∫

s2n−k−2

· · ·
∞
∫

s2n−1

q(s)f
(

x
(

g(s)
))

dsds2n−1 · · ·dsn+1

)1/α

:= Φ2

(

t; x
(

g(t)
))

for t ≥ t1.

Integrating (6.5) n times from t1 to t we get

(6.6) x(t) ≥ x(t1) +
t
∫

t1

s1
∫

t1

· · ·
sn−1
∫

t1

Φ2

(

sn; x
(

g(sn)
))

dsndsn−1 · · · ds1

:= x(t1) + Ψ2

(

t; x
(

g(t)
))

for t ≥ t1.

Case (III) Let 1 ≤ k ≤ n. Integrating (6.2) (n − 1) times from t to u(≥ t) and
letting u → ∞ we have

(6.7) (−1)nx(n)(t) ≥

(

1

a(t)

∞
∫

t

∞
∫

sn+1

· · ·
∞
∫

s2n−1

q(s)f
(

x
(

g(s)
))

dsds2n−1 · · · dsn+1

)1/α

:= Φ3

(

t; x
(

g(t)
))

for t ≥ t1.

Integrating (6.7) (n − k) times from t to u(≥ t) and letting u → ∞ we have

(−1)2n−k−1Lkx(t) ≥
∞
∫

t

∞
∫

sk−1

· · ·
∞
∫

sn−1

Φ3

(

sn; x
(

g(sn)
))

dsndsn−1 · · ·dsk−1.

Further repeated integration of the above inequality shows that

(6.8) x(t) ≥ x(t1) +
t
∫

t1

s1
∫

t1

· · ·
sk−1
∫

t1

∞
∫

sk

· · ·
∞
∫

sn−1

Φ3

(

sn; x
(

g(sn)
))

dsn · · ·ds1

:= x(t1) + Ψ3

(

t; x
(

g(t)
))

for t ≥ t1.

Now it is easy to show the existence of a positive solution to the integral equation

(6.9) yi(t) = c + Ψi(t, yi[g(t)]) for t ≥ t1 and i = 1, 2, 3,

where c = x(t1).
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We define yi,n(t), i = 1, 2, 3 and n = 0, 1, . . . , as

yi,0(t) = x(t)

yi,n+1(t) =

{

c + Ψi

(

t, yi,n

(

g(t)
))

for t ≥ t1 and i = 1, 2, 3

c for t0 ≤ t ≤ t1.

Thus yi,n(t) is well–defined and for t ≥ t1, i = 1, 2, 3 and n = 1, 2, . . . , we get

0 < yi,n(t) ≤ x(t), c ≤ yi,n+1(t) ≤ yi,n(t).

By Lebesgue’s Monotone Convergence Theorem there exists yi(t) such that yi(t) =
lim

n→∞
yi,n(t) for t ≥ t1 and

yi(t) = c + Ψi(t, yi[g(t)]) for t ≥ t1.

It is easy to verify that yi(t) is a solution of equation (1.1) for t ≥ t1 and i = 1, 2, 3.

Next we employ Theorem 6.1 to extend the results obtained to the neutral
differential equation

(6.10) L2n(x(t) + p(t)x
(

σ(t)
)

+ q(t)f
(

x
(

g(t)
))

= 0,

where the operator L2n and the functions g, f and q are as in equation (1.1), and
(v) p(t) and σ(t) ∈ C

(

[t0,∞), R
)

, σ′(t) > 0 for t ≥ t0 and lim
t→∞

σ(t) = ∞.

In fact we prove the following comparison results.

Theorem 6.2. Let conditions (1.2) and (4.19) hold, 0 ≤ p(t) ≤ 1, p(t) 6≡ 0 or

p(t) 6≡ 1 eventually, and σ(t) < t for t ≥ t0. If the equation

(6.11) L2ny(t) + q(t)f
(

1 − p
(

g(t)
))

f
(

y
(

g(t)
))

= 0

is oscillatory, then equation (6.10) is oscillatory.

Theorem 6.3. Let conditions (1.2) and (4.19) hold, p(t) ≥ 1, p(t) 6≡ 1 eventually

and σ(t) > t for t ≥ t0. If the equation

(6.12) L2nz(t) + q(t)f
(

p∗
(

g(t)
))

f
(

z
(

σ−1 ◦ g(t)
))

= 0,

where

p∗(t) =
1

p
(

σ−1(t)
)

(

1 −
1

p
(

σ−1 ◦ σ−1(t)
)

)

for t ≥ t0

and σ−1 is the inverse function of σ, is oscillatory, then equation (6.10) is oscilla-

tory.

Proofs of Theorems 6.2 and 6.3. Let x(t) be a nonoscillatory solution of equation
(6.10), say, x(t) > 0 for t ≥ t0 ≥ 0. Set y(t) = x(t) + p(t)x

(

σ(t)
)

. Then equation
(6.10) becomes

(6.13) L2ny(t) + q(t)f
(

x
(

g(t)
))

= 0 for t ≥ t0.
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It is easy to check that there exists a t1 ≥ t0 such that

(6.14) y(t) > 0 and y′(t) > 0 for t ≥ t1.

Next we assume that 0 ≤ p(t) ≤ 1 and σ(t) < t for t ≥ t0. Now

(6.15) x(t) = y(t) − p(t)x
(

σ(t)
)

= y(t) − p(t)
(

y
(

σ(t)
)

− p
(

σ(t)
)

x
(

σ ◦ σ(t)
))

≥ y(t) − p(t)y
(

σ(t)
)

≥ (1 − p(t))y(t) for t ≥ t1.

Using (6.15) and (4.19) in equation (6.13) we have

(6.16) L2ny(t) + q(t)f
(

1 − p
(

g(t)
))

f
(

y
(

g(t)
))

≤ 0 for t ≥ t1.

Next we assume that p(t) ≥ 1 and σ(t) > t for t ≥ t0. Now

(6.17) x(t) =
1

p
(

σ−1(t)
)

(

y
(

σ−1(t)
)

− x
(

σ−1(t)
)

)

=
y
(

σ−1(t)
)

p
(

σ−1(t)
) −

1

p
(

σ−1(t)
)

(

y
(

σ−1 ◦ σ−1(t)
)

p
(

σ−1 ◦ σ−1(t)
) −

x
(

σ−1 ◦ σ−1(t)
)

p
(

σ−1 ◦ σ−1(t)
)

)

≥
y
(

σ−1(t)
)

p
(

σ−1(t)
) −

y
(

σ−1 ◦ σ−1(t)
)

p
(

σ−1(t)
)

p
(

σ−1 ◦ σ−1(t)
)

≥
1

p
(

σ−1(t)
)

(

1 −
1

p
(

σ−1 ◦ σ−1(t)
)

)

)y
(

σ−1(t)
)

:= p∗(t)y
(

σ−1(t)
)

for t ≥ t1.

Using (6.17) and (4.19) in equation (6.12) we obtain

(6.18) L2ny(t) + q(t)f
(

f∗
(

g(t)
))

f
(

y
(

σ−1 ◦ g(t)
))

≤ 0 for t ≥ t1.

Inequalities (6.16) and (6.18) have eventually positive solutions and so by Theo-
rem 6.1 equations (6.11) and (6.12) have also eventually positive solutions, which
contradicts the hypotheses and completes the proof. �

Next we extend the results obtained to equation (1.1) when the function f
need not be monotonic.

We need the following notations and a Lemma due to Mahfoud [16].

Rt0 =

{

(−∞,−t0] ∪ [t0,∞) if t0 > 0
(−∞, 0) ∪ (0,∞) if t0 = 0

and

CB(Rt0) = {f ∈ C(R) : f is of bounded variation on any interval [a, b] ⊂ Rt0}.
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Lemma 6.1. Suppose t0 ≥ 0 and f ∈ C(R). Then f ∈ CB(Rt0) if and only

if f(x) = H(x)G(x) for all x ∈ R, where G : Rt0 → R
+ is nondecreasing on

(−∞,−t0) and nonincreasing on (t0,∞) and H : Rt0 → R is nondecreasing on

Rt0 .

Now we prove the following result.

Theorem 6.4. Let condition (1.2) hold and assume that f ∈ CB(Rt0), t0 ≥ 0 and

let the functions G and H be a pair of continuous components of f with H being

the nondecreasing one. If for all large T with g(t) > T and all constant c > 0, the

equation

(6.19) L2nx(t) + q(t)G
(

cφ
(

g(t), T ; a
))

H
(

x
(

g(t)
))

= 0

is oscillatory, where the function φ is as in (3.13), then equation (1.1) is oscillatory.

Proof. Let x(t) be a nonoscillatory solution of equation (1.1), say, x(t) > 0 for
t ≥ t0 ≥ 0. As in the proof of Theorem 3.3 we obtain (3.15) for t ≥ T1. There exists
a T2 ≥ T ≥ T1 such that g(t) > T and

(6.20) x
(

g(t)
)

≥ bφ
(

g(t), T ; a
)

for t ≥ T.

Using (6.20) in equation (1.1) we have

(6.21) −L2nx(t) = q(t)f
(

x
(

g(t)
))

= q(t)G
(

x
(

g(t)
))

H
(

x
(

g(t)
))

≥ q(t)G
(

bφ
(

g(t), T ; a
))

H
(

x
(

g(t)
))

for t ≥ T2.

The inequality (6.21) has an eventually positive solution and so by Theorem 6.1
equation (6.19) has also an eventually positive solution, which contradicts the hy-
potheses and completes the proof. �

As examples of functions f(x) which are not monotonic we give the following:

(i) f(x) =
|x|β−1x

1 + |x|γ
, where β and γ are positive constants,

(ii) f(x) = |x|β−1x exp(−|x|γ), where β and γ are positive constants,

(iii) f(x) = |x|β−1x sechx, where β is a positive constant.

We may note that the above results are not applicable to equation (1.1) with
any one of the above choices of f.

Remarks.

1. The results of this paper are presented in a form which is essentially new and of
a higher degree of generality. In fact one can easily extract more criteria than
those presented for the oscillation of equation (1.1) and/or related equations. The
formulation of such criteria is left to the reader.

2. The results of this paper may be extended to forced equations of the form

L2nx(t) + q(t)f
(

x
(

g(t)
))

= e(t),

where e ∈ C
(

[t0,∞), R
)

.
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