OSCILLATION THEOREMS FOR CERTAIN HIGHER ORDER NONLINEAR FUNCTIONAL DIFFERENTIAL EQUATIONS

Ravi P. Agarwal, Said R. Grace, Patricia J. Y. Wong

Some new oscillation theorems for higher-order nonlinear functional differential equations of the form

$$
\frac{\mathrm{d}^{n}}{\mathrm{~d} t^{n}}\left(a(t)\left(\frac{\mathrm{d}^{n} x(t)}{\mathrm{d} t^{n}}\right)^{\alpha}\right)+q(t) f(x(g(t)))=0, \quad \alpha>0
$$

are established.

1. INTRODUCTION

This paper is concerned with the oscillatory behavior of the higher-order nonlinear functional differential equation

$$
\begin{equation*}
L_{2 n} x(t)+q(t) f(x(g(t)))=0 \tag{1.1}
\end{equation*}
$$

where the differential operator, $L_{2 n}$, is defined recursively by

$$
\left\{\begin{array}{l}
L_{0} x=x \tag{1.1}\\
L_{i} x=\frac{\mathrm{d}}{\mathrm{~d} t} L_{i-1} x, \quad i=1,2, \ldots, n-1 \\
L_{j} x=\frac{\mathrm{d}^{j-n}}{\mathrm{~d} t^{j-n}}\left(a\left(\frac{\mathrm{~d}}{\mathrm{~d} t} L_{n-1} x\right)^{\alpha}\right)=\frac{\mathrm{d}^{j-n}}{\mathrm{~d} t^{j-n}} L_{n} x, \quad j=n, n+1, \ldots, 2 n
\end{array}\right.
$$

Clearly

$$
L_{i} x=\frac{\mathrm{d}}{\mathrm{~d} t} L_{i-1} x, \quad i=1,2, \ldots, n-1, n+1, \ldots, 2 n
$$

2000 Mathematics Subject Classification. 34C10.
Keywords and Phrases. Functional differential equations, oscillation, nonoscillation, comparison.
and

$$
L_{n} x=a\left(\frac{\mathrm{~d}}{\mathrm{~d} t} L_{n-1} x\right)^{\alpha}
$$

In what follows we assume that
(i) $a(t), q(t) \in C\left(\left[t_{0}, \infty\right), \mathbb{R}^{+}=(0, \infty)\right)$,
(ii) $g(t) \in C\left(\left[t_{0}, \infty\right), \mathbb{R}=(-\infty, \infty)\right)$ and $\lim _{t \rightarrow \infty} g(t)=\infty$,
(iii) $f \in C(\mathbb{R}, \mathbb{R})$ and $x f(x)>0$ for $x \neq 0$,
(iv) α is the ratio of two positive odd integers.

Also we assume that

$$
\begin{equation*}
\int^{\infty} a^{-1 / \alpha}(s) \mathrm{d} s=\infty \tag{1.2}
\end{equation*}
$$

By a solution of equation (1.1) we mean a function $x \in C^{n}\left(\left[t_{0}, \infty\right), \mathbb{R}\right)$ together with $a\left(x^{(n)}\right)^{\alpha} \in C^{n}\left(\left[t_{0}, \infty\right), \mathbb{R}\right)$ which satisfies equation (1.1) for all $t \geq$ $t_{x} \geq t_{0} \geq 0$. Here we are concerned with proper solutions of equation (1.1), i.e. those solutions $x(t)$ which satisfy $\sup \{|x(t)|: t \geq T\}>0$ for every $T \geq t_{x}$. Such a solution is said to be oscillatory if it has an infinite sequence of zeros clustering at infinity and nonoscillatory if it has at most a finite number of zeros in its interval of existence. Equation (1.1) is called oscillatory if all its solutions are oscillatory.

The problem of obtaining the nonoscillation and oscillation of certain higherorder nonlinear functional differential equations of type (1.1) when $\alpha=1$ and/or $\alpha>0$ has been studied by a number of authors, see $[\mathbf{1}-\mathbf{1 4}, \mathbf{1 6 - 2 1}]$ and the references cited therein. Indeed, Mahfoud $[\mathbf{1 6}, \mathbf{1 7}]$ discussed the oscillation of the special case of (1.1)

$$
x^{(n)}(t)+a(t) f(x(q(t)))=0
$$

Our main objective in this paper is to present an asymptotic study on the oscillation of equation (1.1) and to establish some new oscillation criteria.

In Section 2 we give the proofs of some important lemmas which are useful throughout this paper. Section 3 is devoted to the study of equation (1.1) when f satisfies either $f^{(1 / \alpha)-1}(x) f^{\prime}(x) \geq k>0$ for $x \neq 0$ or $f(x) \operatorname{sgn} x \geq|x|^{\alpha}$. Also, our results involve comparison with related linear and half-linear second-order differential equations. In Section 4 we present some sufficient conditions for the oscillation of equation (1.1) when f satisfies either the condition $\int^{ \pm \infty} \mathrm{d} u / f^{1 / \alpha}(u)<\infty$ or the condition $\int_{ \pm 0} \mathrm{~d} u / f\left(u^{1 / \alpha}\right)<\infty$. Section 5 is devoted to study of some necessary and sufficient conditions for the oscillation of equation (1.1). In Section 6 we give a comparison result which allows us to extend the results obtained to functional differential equations of neutral type and to equations of type (1.1) when the function f need not be monotonic. The results obtained extend, improve and corollate a number of existing results.

2. PRELIMINARIES

To obtain our main results we need the following lemma which is a generalization of the well-known lemma of Kiguradzze [3].

Lemma 2.1. Let $x(t)$ be a nonoscillatory solution of equation (1.1) and condition (1.2) hold. Then there exist an odd integer $k \in\{1,3, \ldots, 2 n-1\}$ and a $T \geq t_{0}$ such that for $t \geq T$,

$$
\left\{\begin{array}{l}
x(t) L_{i} x(t)>0 \text { for } i=0,1, \ldots, k-1 \text { and } \tag{2.1}\\
(-1)^{i+k} x(t) L_{i} x(t)>0 \text { for } i=k, k+1, \ldots, 2 n-1 .
\end{array}\right.
$$

Proof. Let $x(t)$ be a nonoscillatory solution of equation (1.1), say, $x(t)>0$ for $t \geq t_{0}$. Since $L_{2 n} x(t) \leq 0$ for $t \geq t_{0}$, it follows that $L_{i} x(t), i=1,2, \ldots, 2 n-1$, are eventually of constant sign. Firstly we prove that $L_{2 n-1} x(t)>0$ for $t \geq T$ for some $T \geq t_{0}$. To this end, we suppose that for some $T_{1} \geq T$ we have $L_{2 n-1} x(t) \leq$ $0, t \geq T_{1}$. Then, since $L_{2 n-1} x(t)$ is decreasing and not identically zero on $\left[T_{1}, \infty\right)$, there exist a $T_{2} \geq T_{1}$ and a constant $c>0$ such that $L_{i} x(t) \leq-c$ for $t \geq T_{2}$ and $i \in\{1,3, \ldots, 2 n-1\}$ for otherwise integration of the inequality would imply that $L_{0} x(\infty)=x(\infty)=-\infty$, which contradicts the fact that $x(t)>0$ on $\left[t_{0}, \infty\right)$. From this fact it follows that none of the consecutive derivatives $L_{i} x(t)$ and $L_{i+1} x(t)$ can be eventually negative.

Next the positivity of $L_{2 n-1} x(t)$ on $[T, \infty)$ implies that $L_{2 n-2} x(t)$ is increasing there. Here there are two cases to consider:
Case (I). $\quad L_{2 n-2} x(t)>0$ on $\left[t_{1}, \infty\right)$ for some $t_{1} \geq T$. There exist a constant $c_{1}>0$ and a $t_{2} \geq t_{1}$ such that $L_{2 n-2} x(t) \geq c_{1}$ for $t \geq t_{2}$. One can easily see that $L_{i} x(\infty)=\infty$ for $i=1,2, \ldots, 2 n-3$ which shows that $L_{i} x(t), i=1,2, \ldots, 2 n-3$, are eventually positive.
Case (II). $\quad L_{2 n-2} x(t)<0$ on $[\bar{T}, \infty), \bar{T} \geq T$. Clearly $L_{2 n-3} x(t)$ must remain positive on $[\bar{T}, \infty)$ since the simultaneous negativity of $L_{2 n-2} x(t)$ and $L_{2 n-3} x(t)$ is impossible.

Repeatedly applying the same arguments as above we arrive at the desired conclusion.

From Lemma 2.1 we distinguish the following three cases: (i) $k=2 n-1$, (ii) $n+1 \leq k \leq 2 n-3$ and (iii) $1 \leq k \leq n$.
(i) Let $k=2 n-1$. Since $L_{2 n-1} x(t)>0$ is decreasing on $[T, \infty)$, we have

$$
L_{2 n-2} x(t) \geq(t-T) L_{2 n-1} x(t), \quad t \geq T
$$

Integrating this inequality $(n-2)$ times from T to t and using the decreasing property of $L_{2 n-1} x(t)$, we obtain

$$
L_{n} x(t) \geq \frac{(t-T)^{n-1}}{(n-1)!} L_{2 n-1} x(t), \quad t \geq T
$$

or

$$
x^{(n)}(t) \geq\left(\frac{(t-T)^{n-1}}{(n-1)!a(t)}\right)^{1 / \alpha} L_{2 n-1}^{1 / \alpha} x(t), \quad t \geq T
$$

By applying TAYLOR's formula with integral remainder we get

$$
\begin{equation*}
x^{(j)}(t) \geq\left(\int_{T}^{t} \frac{(t-u)^{n-j-1}}{(n-j-1)!}\left(\frac{(u-T)^{n-1}}{(n-1)!a(u)}\right)^{1 / \alpha} \mathrm{d} u\right) L_{2 n-1}^{1 / \alpha} x(t) \tag{2.2}
\end{equation*}
$$

for $j=0,1, \ldots, n-1$ and $t \geq T$.
(ii) Let $n+1 \leq k \leq 2 n-3$. From Lemma 2.1 we see that $L_{2 n-1} x(t)>0$ is decreasing and $L_{2 n-2} x(t)<0$ for $t \geq T$. Now

$$
L_{2 n-2} x(t)-L_{2 n-2} x(s)=\int_{s}^{t} L_{2 n-1} x(u) \mathrm{d} u, \quad t \geq s \geq T
$$

and so

$$
\begin{equation*}
-L_{2 n-2} x(s) \geq(t-s) L_{2 n-1} x(t) \tag{2.3}
\end{equation*}
$$

Integrating the above inequality $(2 n-k-2)$ times from s to t yields

$$
(-1)^{2 n-k-1} L_{k} x(s) \geq \frac{(t-s)^{2 n-k-1}}{(2 n-k-1)!} L_{2 n-1} x(t)
$$

or

$$
\begin{equation*}
L_{k} x(s) \geq \frac{(t-s)^{2 n-k-1}}{(2 n-k-1)!} L_{2 n-1} x(t) \text { for } t \geq s \geq T \tag{2.4}
\end{equation*}
$$

Integrating (2.4) ($k-n$) times from T to $s(\geq T)$ we have

$$
L_{n} x(s) \geq\left(\int_{T}^{s} \frac{(s-u)^{k-n-1}}{(k-n-1)!} \frac{(t-u)^{2 n-k-1}}{(2 n-k-1)!} \mathrm{d} u\right) L_{2 n-1} x(t)
$$

or, equivalently,

$$
x^{(n)}(s) \geq\left(\frac{1}{a(s)} \int_{T}^{s} \frac{(s-u)^{k-n-1}}{(k-n-1)!} \frac{(t-u)^{2 n-k-1}}{(2 n-k-1)!} \mathrm{d} u\right)^{1 / \alpha} L_{2 n-1}^{1 / \alpha} x(t)
$$

As in case (i) one can easily find that
(2.5) $\quad x^{(j)}(s)$

$$
\geq\left(\int_{T}^{s} \frac{(s-v)^{n-j-1}}{(n-j-1)!}\left(\frac{1}{a(v)} \int_{T}^{v} \frac{(v-u)^{k-n-1}}{(k-n-1)!} \frac{(t-u)^{2 n-k-1}}{(2 n-k-1)!} \mathrm{d} u\right)^{1 / \alpha} \mathrm{d} v\right) L_{2 n-1} x(t)
$$

for $j=0,1, \ldots, n-2, t \geq s \geq T$.
(iii) Let $1 \leq k \leq n$. Then as in case (ii), we obtain (2.3) for $t \geq s \geq T$. Integrating (2.3) $(n-2)$ times from s to $t(\geq s \geq T)$ one can easily find that

$$
\begin{equation*}
(-1)^{n-1} x^{(n)}(s) \geq\left(\frac{1}{a(s)} \frac{(t-s)^{n-1}}{(n-1)!}\right)^{1 / \alpha} L_{2 n-1} x(t) \tag{2.6}
\end{equation*}
$$

Next integrating (2.6) $(n-k)$ times from s to $t(\geq s \geq T)$ we find that

$$
\begin{aligned}
& (-1)^{2 n-k-1} x^{(k)}(s) \\
& \quad=x^{(k)}(s) \geq\left(\int_{s}^{t} \frac{(u-s)^{n-k-1}}{(n-k-1)!}\left(\frac{1}{a(u)} \frac{(t-u)^{n-1}}{(n-1)!}\right)^{1 / \alpha} \mathrm{d} u\right) L_{2 n-1}^{1 / \alpha} x(t)
\end{aligned}
$$

As in case (i) we find that

$$
\begin{aligned}
& x^{(j)}(s) \\
& \geq\left(\int_{T}^{s} \frac{(s-v)^{k-j-1}}{(k-j-1)!}\left(\int_{v}^{t} \frac{(u-v)^{n-k-1}}{(n-k-1)!}\left(\frac{1}{a(u)} \frac{(t-u)^{n-1}}{(n-1)!}\right)^{1 / \alpha} \mathrm{d} u\right) \mathrm{d} v\right) L_{2 n-1}^{1 / \alpha} x(t)
\end{aligned}
$$

for $k-1 \geq j=0,1$, and, if $k-1<j=0,1$,

$$
x^{(j)}(s) \geq\left(\int_{s}^{t} \frac{(u-s)^{n-2}}{(n-2)!}\left(\frac{1}{a(u)} \frac{(t-u)^{n-1}}{(n-1)!}\right)^{1 / \alpha} \mathrm{d} u\right) L_{2 n-1}^{1 / \alpha} x(t)
$$

For $t \geq T / \lambda \geq t_{0}, k \in\{1,3, \ldots, 2 n-1\}$ and for some constant $\lambda, 0<\lambda<1$, we define

$$
\begin{aligned}
& H_{j}(t, T ; a ; k ; \lambda)=\min \left\{\begin{array}{r}
\int_{T}^{\lambda t} \frac{(\lambda t-u)^{n-j-1}}{(n-j-1)!}\left(\frac{(u-T)^{n-1}}{(n-1)!} \frac{1}{a(u)}\right)^{1 / \alpha} \mathrm{d} u \\
\quad \text { if } k=2 n-1,
\end{array}\right. \\
& \int_{T}^{\lambda t} \frac{(\lambda t-v)^{n-j-1}}{(n-j-1)!}\left(\frac{1}{a(v)} \int_{T}^{v} \frac{(v-u)^{k-n-1}}{(k-n-1)!} \frac{(t-u)^{2 n-k-1}}{(2 n-k-1)!} \mathrm{d} u\right)^{1 / \alpha} \mathrm{d} v \\
& \text { if } n+1 \leq k \leq 2 n-3
\end{aligned} \quad \begin{aligned}
& \int_{T}^{\lambda t} \frac{(\lambda t-v)^{k-j-1}}{(k-j-1)!}\left(\int_{v}^{t} \frac{(u-v)^{n-k-1}}{(n-k-1)!}\left(\frac{1}{a(u)} \frac{(t-u)^{n-1}}{(n-1)!}\right)^{1 / \alpha} \mathrm{d} u\right) \mathrm{d} v \\
& \quad \text { if } 1 \leq k \leq n, \quad k-1 \geq j, j=0,1 \\
& \left.\int_{\lambda t}^{t} \frac{(u-\lambda t)^{n-2}}{(n-2)!}\left(\frac{1}{a(u)} \frac{(t-u)^{n-1}}{(n-1)!}\right)^{1 / \alpha} \mathrm{d} u \text { if } 1 \leq k \leq n, k-1<j, j=0,1\right\}
\end{aligned}
$$

We are now ready to state the following important lemma.
Lemma 2.2. Let $x(t)$ be a positive solution of equation (1.1). Then for some constant $\lambda, 0<\lambda<1$ and all large $t \geq T \geq t_{0}$ and for $k \in\{1,3, \ldots, 2 n-1\}$,

$$
\begin{equation*}
x^{\prime}(\lambda t) \geq H_{1}(t, T ; a ; k ; \lambda) L_{2 n-1}^{1 / \alpha} x(t) \tag{2.7}
\end{equation*}
$$

and

$$
\begin{equation*}
x(t) \geq x(\lambda t) \geq H_{0}(t, T ; a ; k ; \lambda) L_{2 n-1}^{1 / \alpha} x(t) \tag{2.8}
\end{equation*}
$$

We shall also need the following lemmas.
Lemma 2.3 [15]. If X and Y are nonnegative, then

$$
X^{\bar{\lambda}}+(\bar{\lambda}-1) Y^{\bar{\lambda}}-\bar{\lambda} X Y^{\bar{\lambda}-1} \geq 0, \quad \bar{\lambda}>1,
$$

where equality holds if and only if $X=Y$.
Lemma $2.4[4,5]$. The semilinear differential equation

$$
\begin{equation*}
\left(a(t)\left(x^{\prime}(t)\right)^{\alpha}\right)^{\prime}+q(t) x^{\alpha}(t)=0 \tag{2.9}
\end{equation*}
$$

where a, q and x are as in equation (1.1) is nonoscillatory if and only if there exist a number $T \geq t_{0}$ and a function $v(t) \in C^{1}\left(\left[t_{0}, \infty\right), \mathbb{R}\right.$ which satisfies the inequality

$$
v^{\prime}(t)+\alpha a^{-1 / \alpha}(t)|v(t)|^{1+1 / \alpha}+q(t) \leq 0 \text { on }[T, \infty)
$$

Lemma $2.5[5]$. Let $h(t) \in C\left([T, \infty), \mathbb{R}^{+}\right), T \geq t_{0}$. If there exists a function $v(t) \in C^{1}([T, \infty), \mathbb{R})$ such that

$$
v^{\prime}(t)+h(t) v^{2}(t)+q(t) \leq 0 \text { for every } t \geq T
$$

then the second-order linear differential equation

$$
\left(\frac{1}{h(t)} x^{\prime}(t)\right)^{\prime}+q(t) x(t)=0
$$

is nonoscillatory.

3. OSCILLATION AND COMPARISON RESULTS

In this section we present some sufficient conditions for the oscillation of equation (1.1). Also our results involve comparison with related linear and semilinear second-order differential equations so that the known oscillation theorems from the literature can be employed directly.

In what follows we assume that

$$
\begin{equation*}
f^{1 / \alpha-1}(x) f^{\prime}(x) \geq \bar{k}>0 \text { for } x \neq 0 \text { and } \bar{k} \text { is a constant. } \tag{3.1}
\end{equation*}
$$

We also assume that there exists a function, $\sigma(t) \in C^{1}\left(\left[t_{0}, \infty\right), \mathbb{R}^{+}\right)$, such that

$$
\begin{equation*}
\sigma(t) \leq \inf \{t, g(t)\}, \quad \sigma^{\prime}(t)>0 \text { for } t \geq t_{0} \text { and } \lim _{t \rightarrow \infty} \sigma(t)=\infty \tag{3.2}
\end{equation*}
$$

Theorem 3.1. Let conditions (1.2), (3.1) and (3.2) hold. If there exist a function $\rho(t) \in C^{1}\left(\left[t_{0}, \infty\right), \mathbb{R}^{+}\right)$and a constant $\lambda, 0<\lambda<1$, such that for $\sigma(t)>T / \lambda$, $T \geq t_{0}$, then
(3.3) $\limsup _{t \rightarrow \infty} \int_{T}^{t}(\rho(s) q(s)$

$$
\left.-\frac{1}{(\lambda \bar{k})^{\alpha}} \frac{\alpha^{\alpha}}{(1+\alpha)^{1+\alpha}} \frac{\left(\rho^{\prime}(s)\right)^{\alpha+1}}{\left(\rho(t) \sigma^{\prime}(t) H_{1}(\sigma(s), T ; a ; k ; \lambda)\right)^{\alpha}}\right) \mathrm{d} s=\infty
$$

where H_{1} is as in Lemma 2.2, $k \in\{1,3, \ldots, 2 n-1\}$. Then equation (1.1) is oscillatory.

Proof. Let $x(t)$ be a nonoscillatory solution of equation (1.1), say, $x(t)>0$ for $t \geq t_{0} \geq 0$. From equation (1.1) we see that $L_{2 n} x(t) \leq 0$ for $t \geq t_{0}$ and so $L_{i} x(t), i=1,2, \ldots, 2 n$, are eventually of one sign. By Lemma 2.1 there exists a $t_{1} \geq t_{0}$ and $k \in\{1,3, \ldots, 2 n-1\}$ such that (2.1) holds for $t \geq t_{1}$. By applying Lemma 2.2 there exist a $T \geq t_{1}$ and a $\lambda, 0<\lambda<1$, such that for all large $t \geq \sigma(t)>T / \lambda$

$$
\begin{equation*}
x^{\prime}(\lambda \sigma(t)) \geq H_{1}(\sigma(t), T ; a ; k ; \lambda) L_{2 n-1}^{1 / \alpha} x(t) . \tag{3.4}
\end{equation*}
$$

Define

$$
\begin{equation*}
w(t)=\rho(t) \frac{L_{2 n-1} x(t)}{f(x(\lambda \sigma(t)))} \text { for } t \geq T \tag{3.5}
\end{equation*}
$$

Then for $t \geq T$ we have

$$
\begin{align*}
& w^{\prime}(t)= \rho(t) \frac{\left(L_{2 n-1} x(t)\right)^{\prime}}{f(x(\lambda \sigma(t)))}+\rho^{\prime}(t) \frac{L_{2 n-1} x(t)}{f(x(\lambda \sigma(t)))} \\
& \quad-\lambda \rho(t) \sigma^{\prime}(t) \frac{f^{\prime}(x(\lambda \sigma(t)))}{f^{1-1 / \alpha}(x(\lambda \sigma(t)))} \frac{L_{2 n-1} x(t) x^{\prime}(\lambda \sigma(t))}{f^{1+1 / \alpha}(x(\lambda \sigma(t)))} \\
&=-\rho(t) q(t) \frac{f(x(g(t)))}{f(x(\lambda \sigma(t)))}+\frac{\rho^{\prime}(t)}{\rho(t)} w(t) \tag{3.6}\\
& \quad-\lambda \rho(t) \sigma^{\prime}(t) \frac{f^{\prime}(x(\lambda \sigma(t)))}{f^{1-1 / \alpha}(x(\lambda \sigma(t)))} \frac{L_{2 n-1} x(t) x^{\prime}(\lambda \sigma(t))}{f^{1+1 / \alpha}(x(\lambda \sigma(t)))} .
\end{align*}
$$

Using (3.1) and (3.4) in (3.6) we obtain

$$
\begin{align*}
w^{\prime}(t) \leq- & \rho(t) q(t)+\frac{\rho^{\prime}(t)}{\rho(t)} w(t) \tag{3.7}\\
& -\lambda \bar{k} \rho^{-1 / \alpha}(t) \sigma^{\prime}(t) H_{1}(\sigma(t), T ; a ; k ; \lambda) w^{1+1 / \alpha}(t) \text { for } t \geq T
\end{align*}
$$

Setting

$$
X=\left(\lambda \bar{k} \rho^{-1 / \alpha}(t) \sigma^{\prime}(t) H_{1}(\sigma(t), T ; a ; k ; \lambda)\right)^{\alpha /(\alpha+1)} w(t), \quad \bar{\lambda}=\frac{\alpha+1}{\alpha}>1
$$

and

$$
Y=\left(\frac{\alpha}{\alpha+1}\right)^{\alpha}\left(\frac{\rho^{\prime}(t)}{\rho(t)}\right)^{\alpha}\left(\left(\lambda \bar{k} \rho^{-1 / \alpha}(t) \sigma^{\prime}(t) H_{1}(\sigma(t), T ; a ; k ; \lambda)\right)^{-\alpha /(\alpha+1)}\right)^{\alpha}
$$

in Lemma 2.3 we conclude that

$$
\begin{aligned}
\frac{\rho^{\prime}(t)}{\rho(t)} w(t) & -\lambda k \rho^{-1 / \alpha}(t) \sigma^{\prime}(t) H_{1}(\sigma(t), T ; a ; k ; \lambda) w^{1+1 / \alpha}(t) \\
& \leq \frac{1}{(\lambda \bar{k})^{\alpha}} \frac{\alpha^{\alpha}}{(1+\alpha)^{1+\alpha}} \frac{\left(\rho^{\prime}(t)\right)^{\alpha+1}}{\left(\rho(t) \sigma^{\prime}(t) H_{1}(\sigma(t), T ; a ; k ; \lambda)\right)^{\alpha}} \quad \text { for } \quad t \geq T
\end{aligned}
$$

Thus it follows from (3.7) that

$$
w^{\prime}(t) \leq-\rho(t) q(t)+\frac{1}{(\lambda \bar{k})^{\alpha}} \frac{\alpha^{\alpha}}{(1+\alpha)^{1+\alpha}} \frac{\left(\rho^{\prime}(t)\right)^{\alpha+1}}{\left(\rho(t) \sigma^{\prime}(t) H_{1}(\sigma(t), T ; a ; k ; \lambda)\right)^{\alpha}}, \quad t \geq T
$$

Integrating the above inequality from T to t we have

$$
\begin{align*}
0<w(t) & \leq w(T)-\int_{T}^{t}(\rho(s) q(s) \tag{3.8}\\
& \left.-\frac{1}{(\lambda \bar{k})^{\alpha}} \frac{\alpha^{\alpha}}{(1+\alpha)^{1+\alpha}} \frac{\left(\rho^{\prime}(s)\right)^{\alpha+1}}{\left(\rho(s) \sigma^{\prime}(s) H_{1}(\sigma(s), T ; a ; k ; \lambda)\right)^{\alpha}}\right) \mathrm{d} s
\end{align*}
$$

Taking limsup of both sides of (3.8) as $t \rightarrow \infty$ and using condition (3.3) we find that $w(t) \rightarrow-\infty$ as $t \rightarrow \infty$, which is a contradiction. This completes the proof.

Next we relate the oscillation of equation (1.1) to that of semilinear equations of type (2.9).

Theorem 3.2. Let conditions (1.2), (3.1) and (3.2) hold. Suppose the semilinear second-order equation

$$
\begin{equation*}
\left(c(t)\left(y^{\prime}(t)\right)^{\alpha}\right)^{\prime}+q(t) y^{\alpha}(t)=0 \tag{3.9}
\end{equation*}
$$

is oscillatory, where

$$
c(t)=\left(\frac{\lambda \bar{k}}{\alpha} \sigma^{\prime}(t) H_{1}(\sigma(t), T ; a ; k ; \lambda)\right)^{-\alpha} .
$$

Then equation (1.1) is oscillatory.
Proof. Let $x(t)$ be a nonoscillatory solution of equation (1.1), say, $x(t)>0$ for $t \geq t_{0} \geq 0$. Proceed as in the proof of Theorem 3.1 with $\rho(t)=1$ to obtain (3.8) which takes the form

$$
w^{\prime}(t) \leq-\rho(t) q(t)-\lambda \bar{k} \sigma^{\prime}(t) H_{1}(\sigma(t), T ; a ; k ; \lambda) w^{1+1 / \alpha}(t) \text { for } t \geq T
$$

Applying Lemma 2.4 to the above inequality we conclude that the equation (3.9) is nonoscillatory, which is a contradiction and completes the proof.

Theorem 3.3. Let $\alpha \geq 1$, conditions (1.2) and (3.2) hold and

$$
\begin{equation*}
f(x) \operatorname{sgn} x \geq|x|^{\beta} \quad \text { for } \quad x \neq 0 \tag{3.10}
\end{equation*}
$$

where β is the ratio of two positive odd integers. If there exist a function $\rho(t) \in$ $C^{1}\left(\left[t_{0}, \infty\right), \mathbb{R}^{+}\right)$and a constant $\lambda, 0<\lambda<1$ such that for $\sigma(t)>T / \lambda, T \geq t_{0}$,

$$
\begin{align*}
& \limsup _{t \rightarrow \infty} \int_{T}^{t}(\rho(s) q(s) \tag{3.11}\\
& \left.\quad-\frac{\left(\rho^{\prime}(s)\right)^{2}}{4 \lambda \beta \sigma^{\prime}(s) \rho(s) \eta(s) H_{1}(\sigma(s), T ; a ; k ; \lambda) H_{0}^{\alpha-1}(\sigma(s), T ; a ; k ; \lambda)}\right) \mathrm{d} s=\infty
\end{align*}
$$

where $H_{i}, i=0,1$, are as in Lemma 2.2, $k \in\{1,3, \ldots, 2 n-1\}$ and
(3.12) $\eta(t)= \begin{cases}c_{1}, \quad c_{1} \text { is any positive constant, } & \text { when } \beta>\alpha, \\ 1, & \text { when } \beta=\alpha, \\ c_{2} \phi^{\beta-\alpha}\left(t, t_{0}, a\right), c_{2} \text { is any positive constant, } & \text { when } \beta<\alpha,\end{cases}$ with

$$
\begin{equation*}
\phi\left(t, t_{0}, a\right)=\int_{t_{0}}^{t}(t-s)^{n-1}\left(\frac{s^{n-1}}{a(s)}\right)^{1 / \alpha} \mathrm{d} s \tag{3.13}
\end{equation*}
$$

then equation (1.1) is oscillatory.
Proof. Let $x(t)$ be a nonoscillatory solution of equation (1.1), say, $x(t)>0$ for $t \geq t_{0}>0$. Proceeding as in the proof of Theorem 3.1 we obtain (3.4) and also

$$
\begin{equation*}
x(t) \geq x(\sigma(t)) \geq x(\lambda \sigma(t)) \geq H_{0}(\sigma(t), T ; a ; k ; \lambda) L_{2 n-1}^{1 / \alpha} x(t), \quad t \geq T \tag{3.14}
\end{equation*}
$$

Next there exist a constant $b_{1}>0$ and $\bar{T}_{1} \geq t_{0}$ such that $L_{2 n-1} x(t) \leq b_{1}$ for $t \geq \bar{T}_{1}$. Integrating this inequality from \bar{T}_{1} to t one can easily see that there exist a constant $b>0$ and a $T_{1} \geq \bar{T}_{1}$ such that

$$
\begin{equation*}
x(\lambda \sigma(t)) \leq x(t) \leq b \phi\left(t, \bar{T}_{1} ; a\right) \text { for } t \geq T_{1} . \tag{3.15}
\end{equation*}
$$

Defining the function $w(t)$ by (3.5) and proceeding as in the proof of Theorem 3.1 to obtain (3.6) with $f(x)$ replaced by x^{β}, we obtain
(3.16) $w^{\prime}(t) \leq-\rho(t) q(t)+\frac{\rho^{\prime}(t)}{\rho(t)} w(t)-\lambda \beta \rho(t) \sigma^{\prime}(t) \frac{L_{2 n-1} x(t) x^{\prime}(\lambda \sigma(t))}{x^{\beta+1}(\lambda \sigma(t))}$ for $t \geq T$.

Using (3.4) and (3.14) in inequality (3.16) we find
(3.17) $\quad w^{\prime}(t) \leq-\rho(t) q(t)+\frac{\rho^{\prime}(t)}{\rho(t)} w(t)$

$$
-\lambda \beta \frac{\sigma^{\prime}(t)}{\rho(t)} H_{1}(\sigma(t), T ; a ; k ; \lambda) H_{0}^{\alpha-1}(\sigma(t), T ; a ; k ; \lambda) x^{\beta-\alpha}(\lambda \sigma(t)) w^{2}(t), \quad t \geq T
$$

Next we consider the following three cases:
Case 1. If $\beta>\alpha$, then there exist a constant γ_{1} and a $T_{2} \geq T$ such that

$$
\begin{equation*}
x(\lambda \sigma(t)) \geq \gamma_{1} \text { for } t \geq T_{2} . \tag{3.18}
\end{equation*}
$$

Thus inequality (3.17) takes the form

$$
\begin{align*}
& w^{\prime}(t) \leq-\rho(t) q(t)+\frac{\rho^{\prime}(t)}{\rho(t)} w(t) \tag{3.19}\\
& \quad-\lambda \beta \gamma_{1}^{\beta-\alpha} \frac{\sigma^{\prime}(t)}{\rho(t)} H_{1}(\sigma(t), T ; a ; k ; \lambda) H_{0}^{\alpha-1}(\sigma(t), T ; a ; k ; \lambda) w^{2}(t), \quad t \geq T_{2}
\end{align*}
$$

Case 2. If $\beta=\alpha$, then inequality (3.17) becomes

$$
\begin{align*}
w^{\prime}(t) & \leq-\rho(t) q(t)+\frac{\rho^{\prime}(t)}{\rho(t)} w(t) \tag{3.20}\\
& -\lambda \beta \frac{\sigma^{\prime}(t)}{\rho(t)} H_{1}(\sigma(t), T ; a ; k ; \lambda) H_{0}^{\alpha-1}(\sigma(t), T ; a ; k ; \lambda) w^{2}(t), \quad t \geq T
\end{align*}
$$

Case 3. If $\beta<\alpha$, then by (3.15) we get

$$
\begin{equation*}
x^{\beta-\alpha}(\lambda \sigma(t)) \geq \gamma_{2} \phi^{\beta-\alpha}\left(t, \bar{T}_{1} ; a\right), \quad \gamma_{2}=b^{\beta-\alpha}, \quad t \geq T_{1} \tag{3.21}
\end{equation*}
$$

and inequality (3.17) becomes

$$
\begin{align*}
& w^{\prime}(t) \leq-\rho(t) q(t)+\frac{\rho^{\prime}(t)}{\rho(t)} w(t) \tag{3.22}\\
& -\lambda \beta \gamma_{2} \phi^{\beta-\alpha}(t, \bar{T} ; a) H_{1}(\sigma(t), T ; a ; k ; \lambda) H_{0}^{\alpha-1}(\sigma(t), T ; a ; k ; \lambda) w^{2}(t), t \geq T_{1}
\end{align*}
$$

Choose $T^{*}=\max \left\{T, T_{1}, T_{2}\right\}$ and combine the inequalities (3.19), (3.20) and (3.22) to obtain

$$
\begin{align*}
& \text { 3) } w^{\prime}(t) \leq-\rho(t) q(t)+\frac{\rho^{\prime}(t)}{\rho(t)} w(t) \tag{3.23}\\
& -\lambda \beta \frac{\sigma^{\prime}(t)}{\rho(t)} \eta(t) H_{1}(\sigma(t), T ; a ; k ; \lambda) H_{0}^{\alpha-1}(\sigma(t), T ; a ; k ; \lambda) w^{2}(t), \quad t \geq T^{*} \\
& =-\rho(t) q(t)-\left(\left(\lambda \beta \frac{\sigma^{\prime}(t)}{\rho(t)} \eta(t) H_{1}(\sigma(t), T ; a ; k ; \lambda) H_{0}^{\alpha-1}(\sigma(t), T ; a ; k ; \lambda)\right)^{1 / 2} w(t)\right. \\
& -\frac{\rho^{\prime}(t)}{\left.2 \rho(t)\left(\lambda \beta \frac{\sigma^{\prime}(t)}{\rho(t)} \eta(t) H_{1}(\sigma(t), T ; a ; k ; \lambda) H_{0}^{\alpha-1}(\sigma(t), T ; a ; k ; \lambda)\right)^{1 / 2}\right)^{2}} \\
& +\frac{\left(\rho^{\prime}(t)\right)^{2}}{4 \lambda \beta \sigma^{\prime}(t) \rho(t) \eta(t) H_{1}(\sigma(t), T ; a ; k ; \lambda) H_{0}^{\alpha-1}(\sigma(t), T ; a ; k ; \lambda)} \\
& 4) \leq-(\rho(t) q(t) \tag{3.24}\\
& \left.\quad-\frac{\left(\rho^{\prime}(t)\right)^{2}}{4 \lambda \beta \sigma^{\prime}(t) \rho(t) \eta(t) H_{1}(\sigma(t), T ; a ; k ; \lambda) H_{0}^{\alpha-1}(\sigma(t), T ; a ; k ; \lambda)}\right), t \geq T^{*} .
\end{align*}
$$

Integrating (3.24) from T^{*} to t we have

$$
\begin{aligned}
0<w(t) \leq & w\left(T^{*}\right)-\int_{T^{*}}^{t}(\rho(s) q(s) \\
& \left.-\frac{\left(\rho^{\prime}(s)\right)^{2}}{4 \lambda \beta \sigma^{\prime}(s) \rho(s) \eta(s) H_{1}(\sigma(s), T ; a ; k ; \lambda) H_{0}^{\alpha-1}(\sigma(s), T ; a ; k ; \lambda)}\right) \mathrm{d} s
\end{aligned}
$$

Taking limsup of both sides of the above inequality as $t \rightarrow \infty$ and by condition (3.11) we see that $w(t) \rightarrow-\infty$ as $t \rightarrow \infty$, which is a contradiction and completes the proof.

In the following result we compare the oscillation of equation (1.1) with that of linear second-order ordinary differential equation.
Theorem 3.4. Let $\alpha \geq 1$, conditions (1.2) and (3.2) hold and (3.10) hold. Suppose the linear second-order equation

$$
\begin{equation*}
\left(\frac{1}{r(t)} y^{\prime}(t)\right)^{\prime}+q(t) y(t)=0 \tag{3.25}
\end{equation*}
$$

is oscillatory, where $r(t)=\lambda \beta \sigma^{\prime}(t) \eta(t) H_{1}(\sigma(t), T ; a ; k ; \lambda) H_{0}^{\alpha-1}(\sigma(t), T ; a ; k ; \lambda)$. Then equation (1.1) is oscillatory.
Proof. Let $x(t)$ be a nonoscillatory solution of equation (1.1), say, $x(t)>0$ for $t \geq t_{0} \geq 0$. Proceed as in the proof of Theorem 3.3 with $\rho(t)=1$ to obtain (3.23) which takes the form
$w^{\prime}(t) \leq-q(t)-\lambda \beta \sigma^{\prime}(t) \eta(t) H_{1}(\sigma(t), T ; a ; k ; \lambda) H_{0}^{\alpha-1}(\sigma(t), T ; a ; k ; \lambda) w^{2}(t), \quad t \geq T^{*}$.

Applying Lemma 2.5 to the above inequality we find that the equation (3.25) is nonoscillatory, which is a contradiction. This completes the proof.

Next we present the following oscillation result for equation (1.1) when $0<$ $\alpha \leq 1$.
Theorem 3.5. Let $0<\alpha \leq 1$, conditions (1.2), (3.2) and (3.10) hold. Moreover assume that there exist a function $\rho(t) \in C^{1}\left(\left[t_{0}, \infty\right), \mathbb{R}^{+}\right)$and a constant $\lambda, 0<$ $\lambda<1$, such that for $\sigma(t)>T / \lambda, T \geq t_{0}$,

$$
\begin{equation*}
\limsup _{t \rightarrow \infty} \int_{T}^{t}\left(\rho(s) q(s)-\frac{\left(\rho^{\prime}(s)\right)^{2} Q^{1-1 / \alpha}(s)}{4 \lambda \beta \sigma^{\prime}(s) \xi(s) H_{1}(\sigma(s), T ; a ; k ; \lambda)}\right) \mathrm{d} s=\infty \tag{3.26}
\end{equation*}
$$

where H_{1} is as in Lemma 2.2, $k \in\{1,3, \ldots, 2 n-1\}$ and $Q(t)=\int_{t}^{\infty} q(s) \mathrm{d} s$ and
(3.27) $\quad \xi(t)= \begin{cases}c_{1}, c_{1} \text { is any positive constant, } & \text { when } \beta>\alpha, \\ 1, & \text { when } \beta=\alpha, \\ c_{2} \phi^{\beta / \alpha-1}\left(t, t_{0} ; a\right), c_{2} \text { is any positive constant, } & \text { when } \beta<\alpha,\end{cases}$
then equation (1.1) is oscillatory.
Proof. Let $x(t)$ be a nonoscillatory solution of equation (1.1), say, $x(t)>0$ for $t \geq t_{0}>0$. Define the function $w(t)$ by (3.5) with $f(x)=x^{\beta}$ and proceed as in the proof of Theorems 3.1 and 3.3 to obtain (3.4), (3.14) - (3.16) for $t \geq T$. Using (3.4) in (3.16) one can easily find that

$$
\begin{align*}
w^{\prime}(t) & \leq-\rho(t) q(t)+\frac{\rho^{\prime}(t)}{\rho(t)} w(t) \tag{3.28}\\
& -\lambda \beta \sigma^{\prime}(t) \rho^{-1 / \alpha}(t) w^{2}(t) w^{1 / \alpha-1}(t) H_{1}(\sigma(t), T ; a ; k ; \lambda) x^{\beta / \alpha-1}(\lambda \sigma(t))
\end{align*}
$$

It is easy to see that

$$
\begin{equation*}
w(t) \geq \rho(t) Q(t) \text { for } t \geq T \tag{3.29}
\end{equation*}
$$

Using (3.29) in (3.28) we obtain

$$
\begin{align*}
w^{\prime}(t) & \leq-\rho(t) q(t)+\frac{\rho^{\prime}(t)}{\rho(t)} w(t) \tag{3.30}\\
& -\frac{\lambda \beta \sigma^{\prime}(t)}{\rho(t)} Q^{1 / \alpha-1}(t) H_{1}(\sigma(t), T ; a ; k ; \lambda) w^{2}(t) x^{\beta / \alpha-1}(\lambda \sigma(t)), \quad t \geq T
\end{align*}
$$

The rest of the proof is similar to that of Theorem 3.3 and hence is omitted.
In the following result we relate the oscillation of equation (1.1) for $0<\alpha \leq 1$ with that of linear second-order equations.

Theorem 3.6. Let $0<\alpha \leq 1$, conditions (1.2), (3.2) and (3.10) hold. Suppose the linear second-order equation

$$
\begin{equation*}
\left(\frac{1}{h(t)} z^{\prime}(t)\right)^{\prime}+q(t) z(t)=0 \tag{3.31}
\end{equation*}
$$

is oscillatory, where $h(t)=\lambda \beta \sigma^{\prime}(t) \xi(t) Q^{1 / \alpha-1}(t) H_{1}(\sigma(t), T ; a ; k ; \lambda)$ and $\xi(t)$ is given by (3.27). Then equation (1.1) is oscillatory.
Proof. Let $x(t)$ be a nonoscillatory solution of equation (1.1), say, $x(t)>0$ for $t \geq t_{0}>0$. Proceeding as in the proof of Theorem 3.5 with $\rho(t)=1$ to obtain the inequality (3.30) which takes the form

$$
w^{\prime}(t) \leq-q(t)-\lambda \beta \sigma^{\prime}(t) \xi(t) Q^{1 / \alpha-1}(t) H_{1}(\sigma(t), T ; a ; k ; \lambda) w^{2}(t), \quad t \geq T
$$

The rest of the proof is similar to that of Theorem 3.4 and hence is omitted.
For each $t \geq t_{0}$ we let $g(t) \leq t$ and define $\mu(t)=\sup \left\{s \geq t_{0}: g(s) \leq t\right\}$. Clearly $\mu(t) \geq t$ and $g \circ \mu(t)=t$. Now we are ready to prove the following result.
Theorem 3.7. Let $g(t) \leq t$ for $t \geq t_{0}$ and conditions (1.2) and (3.10) hold with $\alpha=\beta$. If for all large $T \geq t_{0}, k \in\{1,3, \ldots, 2 n-1\}$ and some constant $\lambda, \lambda \in(0,1)$,

$$
\begin{equation*}
\limsup _{t \rightarrow \infty} H_{0}^{\alpha}(t, T ; a ; k ; \lambda) \int_{\mu(t)}^{\infty} q(s) \mathrm{d} s>1 \tag{3.32}
\end{equation*}
$$

then equation (1.1) is oscillatory.
Proof. Let $x(t)$ be a nonoscillatory solution of equation (1.1), say, $x(t)>0$ for $t \geq t_{0} \geq 0$. Integrating equation (1.1) from $t\left(\geq t_{0}\right)$ to $u(\geq t)$ and letting $u \rightarrow \infty$ we obtain

$$
L_{2 n-1} x(t) \geq \int_{t}^{\infty} q(s) x^{\alpha}(g(s)) \mathrm{d} s, \quad t \geq t_{0}
$$

By Lemma 2.2 there exist a $T \geq t_{0}, \lambda \in(0,1)$ and $k \in\{1,3, \ldots, 2 n-1\}$ such that

$$
\begin{equation*}
x(t) \geq H_{0}(t, T ; a ; k ; \lambda) L_{2 n-1}^{1 / \alpha} x(t) \text { for } t \geq T \tag{3.33}
\end{equation*}
$$

Thus we have

$$
\begin{aligned}
x^{\alpha}(t) & \geq H_{0}^{\alpha}(t, T ; a ; k ; \lambda) L_{2 n-1} x(t) \\
& \geq H_{0}^{\alpha}(t, T ; a ; k ; \lambda) \int_{t}^{\infty} q(s) x^{\alpha}(g(s)) \mathrm{d} s, \quad t \geq T .
\end{aligned}
$$

Now by $\mu(t) \geq t$ and the fact that $x^{\prime}(t)>0$ and $g(s) \geq t$ for $s \geq \mu(t)$ it follows that

$$
\begin{align*}
x^{\alpha}(t) & \geq H_{0}^{\alpha}(t, T ; a ; k ; \lambda)\left(\int_{\mu(t)}^{\infty} q(s) x^{\alpha}(g(s)) \mathrm{d} s\right) \\
& \geq H_{0}^{\alpha}(t, T ; a ; k ; \lambda) x^{\alpha}(t)\left(\int_{\mu(t)}^{\infty} q(s) \mathrm{d} s\right) \tag{3.34}
\end{align*}
$$

Dividing both sides of (3.34) by $x^{\alpha}(t)$ we have

$$
\begin{equation*}
H_{0}^{\alpha}(t, T ; a ; k ; \lambda) \int_{\mu(t)}^{\infty} q(s) \mathrm{d} s \leq 1, \quad t \geq T \tag{3.35}
\end{equation*}
$$

Taking limsup of both sides of (3.35) as $t \rightarrow \infty$ we obtain a contradiction to condition (3.32). This completes the proof.

In the case of an advanced equation (1.1), i.e., $g(t) \geq t$ for $t \geq t_{0}$, Theorem 3.7 takes the following form.

Theorem 3.8. Let $g(t) \geq t$ for $t \geq t_{0}$ and conditions (1.2) and (3.10) hold with $\alpha=\beta$. If for all large $T \geq t_{0}, k \in\{1,3, \ldots, 2 n-1\}$ and some constant $\lambda, \lambda \in(0,1)$,

$$
\begin{equation*}
\limsup _{t \rightarrow \infty} H_{0}^{\alpha}(t, T ; a ; k ; \lambda) \int_{t}^{\infty} q(s) \mathrm{d} s>1 \tag{3.36}
\end{equation*}
$$

then equation (1.1) is oscillatory.
Next we present the following result when

$$
\begin{equation*}
Q(t):=\int_{t}^{\infty} q(s) \mathrm{d} s<\infty \text { for } t \geq t_{0} \tag{3.37}
\end{equation*}
$$

Theorem 3.9. Let conditions (1.2), (3.2) with $\sigma^{\prime}(t) \geq 0$ for $t \geq t_{0}$, (3.10) with $\alpha=\beta$ and (3.37) hold. If for $k \in\{1,3, \ldots, 2 n-1\}$, some constant $\lambda, \lambda \in(0,1)$ and all large $T \geq t_{0}$ with $\sigma(t)>T / \lambda$,

$$
\begin{align*}
& \limsup _{t \rightarrow \infty} H_{0}(\sigma(t), T ; a ; k ; \lambda)(Q(t) \tag{3.38}\\
& \left.\quad+\alpha \lambda \int_{t}^{\infty} H_{1}(\sigma(t), T ; a ; k ; \lambda) \sigma^{\prime}(s) Q^{(\alpha+1) / \alpha}(s) \mathrm{d} s\right)^{1 / \alpha}>1
\end{align*}
$$

then equation (1.1) is oscillatory.
Proof. Let $x(t)$ be a nonoscillatory solution of equation (1.1), say, $x(t)>0$ for $t \geq t_{0} \geq 0$. Define $w(t)$ as in (3.5) with $\rho(t)=1$ and $f(x)=x^{\alpha}$ and as in the proof of Theorem 3.1 we obtain (3.7) which takes the form

$$
\begin{equation*}
w^{\prime}(t) \leq-q(t)-\alpha \lambda \sigma^{\prime}(t) H_{1}(\sigma(t), T ; a ; k ; \lambda) w^{1+1 / \alpha}(t), \quad t \geq T \geq t_{0} \tag{3.39}
\end{equation*}
$$

Integrating (3.39) from $t(\geq T)$ to $u(\geq t)$ and letting $u \rightarrow \infty$ we find that

$$
\begin{equation*}
\frac{L_{2 n-1}^{1 / \alpha} x(t)}{x(\lambda \sigma(t))} \geq\left(Q(t)+\alpha \lambda \int_{t}^{\infty} H_{1}(\sigma(s), T ; a ; k ; \lambda) w^{1+1 / \alpha}(s) \mathrm{d} s\right)^{1 / \alpha}, \quad t \geq T \tag{3.40}
\end{equation*}
$$

Now one can easily see that

$$
\begin{equation*}
w(t) \geq Q(t) \text { for } t \geq T \tag{3.41}
\end{equation*}
$$

Using (3.33) with $t=\sigma(t)$ and (3.41) in (3.40) we have

$$
1 \geq H_{0}(\sigma(t), T ; a ; k ; \lambda)\left(Q(t)+\alpha \lambda \int_{t}^{\infty} H_{1}(\sigma(s), T ; a ; k ; \lambda) Q^{1+1 / \alpha}(s) \mathrm{d} s\right)^{1 / \alpha}
$$

Taking limsup of both sides of the above inequality as $t \rightarrow \infty$ we obtain a contradiction to condition (3.38). This completes the proof.

Next we have the following comparison result.
Theorem 3.10. Let conditions (1.2), (3.2) with $\sigma^{\prime}(t) \geq 0$ for $t \geq t_{0}$ and (3.10) hold. If for $k \in\{1,3, \ldots, 2 n-1\}$, some constant $\lambda, \lambda \in(0,1)$, and all large $T \geq t_{0}$ with $\sigma(t)>T / \lambda$, every solution of the first-order delay differential equation

$$
\begin{equation*}
y^{\prime}(t)+q(t) H_{0}^{\beta}(\sigma(t), T ; a ; k ; \lambda) y^{\beta / \alpha}(\sigma(t))=0 \tag{3.42}
\end{equation*}
$$

is oscillatory, then equation (1.1) is oscillatory.
Proof. Let $x(t)$ be a nonoscillatory solution of equation (1.1), say, $x(t)>0$ for $t \geq t_{0} \geq 0$. As in the proof of Theorem 3.7 we obtain (3.33) for $t \geq T$. There exists a $T_{0} \geq T$ such that

$$
\begin{equation*}
x(\sigma(t)) \geq H_{0}(\sigma(t), T ; a ; k ; \lambda) L_{2 n-1}^{1 / \alpha} x(\sigma(t)), \quad t \geq T_{0} \tag{3.43}
\end{equation*}
$$

Using condition (3.10) and (3.43) in equation (1.1) we have

$$
\begin{aligned}
-\frac{\mathrm{d}}{\mathrm{~d} t} L_{2 n-1} x(t) & =q(t) f(x(g(t))) \geq q(t) x^{\beta}(\sigma(t)) \\
& \geq q(t) H_{0}^{\beta}(\sigma(t), T ; a ; k ; \lambda) L_{2 n-1}^{\beta / \alpha} x(\sigma(t)), \quad t \geq T_{0}
\end{aligned}
$$

Set $y(t)=L_{2 n-1} x(t)>0, t \geq T_{0}$. We get

$$
\begin{equation*}
y^{\prime}(t)+q(t) H_{0}^{\beta}(\sigma(t), T ; a ; k ; \lambda) y^{\beta / \alpha}(\sigma(t)) \leq 0, \quad t \geq T_{0} \tag{3.44}
\end{equation*}
$$

Integrating the inequality (3.44) from $t\left(\geq T_{0}\right)$ to u and letting $u \rightarrow \infty$ we have

$$
y(t) \geq \int_{t}^{\infty} q(s) H_{0}^{\beta}(\sigma(t), T ; a ; k ; \lambda) y^{\beta / \alpha}(\sigma(s)) \mathrm{d} s, \quad t \geq T_{0}
$$

As in $[\mathbf{1 7}]$ it is easy to conclude that there exists a positive solution $y(t)$ of equation (3.42) with $\lim _{t \rightarrow \infty} y(t)=0$, which contradicts the fact that equation (3.42) is oscillatory. This completes the proof.

The following corollary is immediate.
Corollary 3.1. Let conditions (1.2), (3.2) with $\sigma^{\prime}(t) \geq 0$ for $t \geq t_{0}$ and (3.10) hold. If for $k \in\{1,3, \ldots, 2 n-1\}$, some constant $\lambda, \lambda \in(0,1)$, and all large $T \geq t_{0}$ with $\sigma(t)>T / \lambda$, either

$$
\begin{equation*}
\liminf _{t \rightarrow \infty} \int_{\sigma(t)}^{t} q(s) H_{0}^{\alpha}(\sigma(s), T ; a ; k ; \lambda) \mathrm{d} s>\frac{1}{e}, \quad \text { when } \alpha=\beta \tag{3.45}
\end{equation*}
$$

or

$$
\begin{equation*}
\lim _{t \rightarrow \infty} \int^{t} q(s) H_{0}^{\beta}(\sigma(s), T ; a ; k ; \lambda) \mathrm{d} s=\infty, \quad \text { when } \beta<\alpha \tag{3.46}
\end{equation*}
$$

holds, then equation (1.1) is oscillatory.
Remark 3.1. We note that some of our results of this section are new even when $\alpha=1$.

4. SUFFICIENT CONDITIONS

In this section we present some criteria for the oscillation of equation (1.1) when the function f satisfies either

$$
\begin{equation*}
\int^{ \pm \infty} \frac{\mathrm{d} u}{f^{1 / \alpha}(u)}<\infty \tag{4.1}
\end{equation*}
$$

or

$$
\begin{equation*}
\int_{ \pm 0} \frac{\mathrm{~d} u}{f\left(u^{1 / \alpha}\right)}<\infty \tag{4.2}
\end{equation*}
$$

Theorem 4.1. Let $\alpha \geq 1$ and conditions (1.2), (3.2) and (4.1) hold. Moreover assume that there exist a function $\rho \in C^{1}\left(\left[t_{0}, \infty\right), \mathbb{R}^{+}\right)$, a constant $\lambda, \lambda \in(0,1)$, and $k \in\{1,3, \ldots, 2 n-1\}$ such that for all large $T \geq t_{0}$ with $\sigma(t) T / \lambda$

$$
\begin{equation*}
\rho^{\prime}(t) \geq 0 \quad \text { and } \quad\left(\frac{\left(\rho^{\prime}(t)\right)^{1 / \alpha}}{H_{1}(\sigma(t), T ; a ; k ; \lambda)}\right)^{\prime} \leq 0, \quad t \geq T \tag{4.3}
\end{equation*}
$$

If

$$
\begin{equation*}
\int^{\infty} \rho(s) q(s) \mathrm{d} s=\infty \tag{4.4}
\end{equation*}
$$

then equation (1.1) is oscillatory.
Proof. Let $x(t)$ be a nonoscillatory solution of equation (1.1), say, $x(t)>0$ for $t \geq t_{0} \geq 0$. As in the proof of Theorem 3.1 we define the function $w(t)$ as in (3.5) and proceed to obtain (3.4) and (3.6), i.e.,

$$
\begin{equation*}
w^{\prime}(t) \leq-\rho(t) q(t)+\rho^{\prime}(t) \frac{L_{2 n-1} x(t)}{f(x(\lambda \sigma(t)))}, \quad t \geq T \geq t_{0} \tag{4.5}
\end{equation*}
$$

Using (3.4) in (4.5) we get

$$
\begin{equation*}
w^{\prime}(t) \leq-\rho(t) q(t)+\frac{\rho^{\prime}(t)}{f(x(\lambda \sigma(t)))}\left(\frac{x^{\prime}(\lambda \sigma(t)) \lambda \sigma^{\prime}(t)}{H_{1}(\sigma(t), T ; a ; k ; \lambda) \lambda \sigma^{\prime}(t)}\right)^{\alpha} \tag{4.6}
\end{equation*}
$$

$$
=-\rho(t) q(t)+\left(\left(\frac{\left(\rho^{\prime}(t)\right)^{1 / \alpha}}{H_{1}(\sigma(), T ; a ; k ; \lambda) \lambda \sigma^{\prime}(t)}\right) \frac{x^{\prime}(\lambda \sigma(t)) \lambda \sigma^{\prime}(t)}{f^{1 / \alpha}(x(\lambda \sigma(t)))}\right)^{\alpha}, t \geq T_{1} \geq T
$$

Integrating (4.6) from T_{1} to t we obtain

$$
\begin{align*}
w(t) \leq w\left(T_{1}\right) & -\int_{T_{1}}^{t} \rho(s) q(s) \mathrm{d} s \tag{4.7}\\
& +\int_{T_{1}}^{t}\left(\left(\frac{\left(\rho^{\prime}(s)\right)^{1 / \alpha}}{H_{1}(\sigma(s), T ; a ; k ; \lambda) \lambda \sigma^{\prime}(s)}\right) \frac{x^{\prime}(\lambda \sigma(s)) \lambda \sigma^{\prime}(s)}{f^{1 / \alpha}(x(\lambda \sigma(s)))}\right)^{\alpha} \mathrm{d} s \\
\leq w\left(T_{1}\right) & -\int_{T_{1}}^{t} \rho(s) q(s) \mathrm{d} s \\
& +\left(\int_{T_{1}}^{t}\left(\frac{\left(\rho^{\prime}(s)\right)^{1 / \alpha}}{H_{1}(\sigma(s), T ; a ; k ; \lambda) \lambda \sigma^{\prime}(s)}\right) \frac{x^{\prime}(\lambda \sigma(s)) \lambda \sigma^{\prime}(s)}{f^{1 / \alpha}(x(\lambda \sigma(s)))} \mathrm{d} s\right)^{\alpha}
\end{align*}
$$

However, by the Bonnet second mean-value theorem, for a fixed $t \geq T_{1}$ and for some $\xi \in\left[T_{1}, t\right]$, we have

$$
\begin{align*}
& \int_{T_{1}}^{t}\left(\frac{\left(\rho^{\prime}(s)\right)^{1 / \alpha}}{H_{1}(\sigma(s), T ; a, k ; \lambda) \lambda \sigma^{\prime}(s)}\right)\left(\frac{x^{\prime}(\lambda \sigma(s)) \lambda \sigma^{\prime}(s)}{f^{1 / \alpha}(x(\lambda \sigma(s)))}\right) \mathrm{d} s \tag{4.8}\\
& =\left(\frac{\left(\rho^{\prime}\left(T_{1}\right)\right)^{1 / \alpha}}{H_{1}\left(\sigma\left(T_{1}\right), T ; a ; k ; \lambda\right) \lambda \sigma^{\prime}\left(T_{1}\right)}\right) \int_{x\left(\lambda \sigma\left(T_{1}\right)\right)}^{x(\lambda \sigma(t))} \frac{\mathrm{d} u}{f^{1 / \alpha}(u)} \\
& \quad \leq\left(\frac{\left(\rho^{\prime}\left(T_{1}\right)\right)^{1 / \alpha}}{H_{1}\left(\sigma\left(T_{1}\right), T ; a ; k ; \lambda\right) \lambda \sigma^{\prime}\left(T_{1}\right)}\right) \int_{x\left(\lambda \sigma\left(T_{1}\right)\right)}^{\infty} \frac{\mathrm{d} u}{f^{1 / \alpha}(u)}:=M
\end{align*}
$$

where M is a positive constant.
Using (4.8) in (4.7) we have

$$
\begin{equation*}
\int_{T_{1}}^{t} \rho(s) q(s) \mathrm{d} s \leq-w(t)+w\left(T_{1}\right)+M^{\alpha} . \tag{4.9}
\end{equation*}
$$

Letting $t \rightarrow \infty$ in (4.9), we arrive at a contradiction to condition (4.4) and this completes the proof.

The following result is immediate.
Theorem 4.2. Let condition (4.3) in Theorem 4.1 be replaced by

$$
\begin{equation*}
\rho^{\prime}(t) \geq 0 \quad \text { for } t \geq t_{0} \quad \text { and } \quad \int^{\infty}\left|\left(\frac{\left(\rho^{\prime}(s)\right)^{1 / \alpha}}{\sigma^{\prime}(s) H_{1}(\sigma(s), T ; a ; k ; \lambda)}\right)^{\prime}\right| \mathrm{d} s<\infty . \tag{4.10}
\end{equation*}
$$

Then the conclusion of Theorem 4.1 holds.
Next we present the following oscillation criteria for equation (1.1) when condition (3.37) is satisfied.

Theorem 4.3. Let conditions (1.2), (3.2) with $\sigma^{\prime}(t) \geq 0$ for $t \geq t_{0}$, (3.37) and (4.1) hold. If for all large $T \geq t_{0}$, some constant $\lambda, \lambda \in(0,1)$ and $k \in\{1,3, \ldots, 2 n-1\}$ such that for $\sigma(t)>T / \lambda$,

$$
\begin{equation*}
\int^{\infty} H_{1}(\sigma(s), T ; a ; k ; \lambda) \sigma^{\prime}(s) Q^{1 / \alpha}(s) \mathrm{d} s=\infty \tag{4.11}
\end{equation*}
$$

then equation (1.1) is oscillatory.
Proof. Let $x(t)$ be a nonoscillatory solution of equation (1.1), say, $x(t)>0$ for $t \geq t_{0} \geq 0$. Define the function $w(t)$ as in (3.5) with $\rho(t)=1$. Then we obtain

$$
\int_{t_{1}}^{t} q(s) \mathrm{d} s \leq \frac{L_{2 n-1} x\left(t_{1}\right)}{f\left(x\left(\lambda \sigma\left(t_{1}\right)\right)\right)}
$$

and hence for any $t \geq t_{1}$

$$
\begin{equation*}
Q^{1 / \alpha}(t) \leq \frac{L_{2 n-1}^{1 / \alpha} x(t)}{f^{1 / \alpha}(x(\lambda \sigma(t)))} \tag{4.12}
\end{equation*}
$$

Using (3.4) in (4.12) we obtain

$$
\begin{equation*}
H_{1}(\sigma(t), T ; a ; k ; \lambda) \lambda \sigma^{\prime}(t) Q^{1 / \alpha}(t) \leq \frac{x^{\prime}(\lambda \sigma(t)) \lambda \sigma^{\prime}(t)}{f^{1 / \alpha}(x(\lambda \sigma(t)))} \tag{4.13}
\end{equation*}
$$

for $\sigma(t)>T / \lambda, T \geq t_{1}$.
Integrating (4.13) from T to t we get

$$
\begin{aligned}
\lambda \int_{T}^{t} H_{1}(\sigma(s), T ; a ; k ; \lambda) \sigma^{\prime}(s) Q^{1 / \alpha}(s) \mathrm{d} s & \leq \int_{x(\lambda \sigma(T))}^{x(\lambda \sigma(t))} \frac{\mathrm{d} u}{f^{1 / \alpha}(u)} \\
& \leq \int_{x(\lambda \sigma(T))}^{\infty} \frac{\mathrm{d} u}{f^{1 / \alpha}(u)}<\infty,
\end{aligned}
$$

which contradicts condition (4.11) and completes the proof.
Theorem 4.4. Let conditions (1.2), (3.1), (3.2) with $\sigma^{\prime}(t) \geq 0$ for $t \geq t_{0}$, (3.37) and (4.1) hold. If for all large $T \geq t_{0}$ with $\sigma(t)>T / \lambda$ for some constant $\lambda, \lambda \in(0,1)$, and $k \in\{1,3, \ldots, 2 n-1\}$,

$$
\begin{align*}
& \int^{\infty} H_{1}(\sigma(s), T ; a ; k ; \lambda) \sigma^{\prime}(s)(Q(s) \tag{4.14}\\
& \left.+\bar{k} \lambda \int_{s}^{\infty} H_{1}(\sigma(u), T ; a ; k ; \lambda) \sigma^{\prime}(u) Q^{1+1 / \alpha}(u) d u\right)^{1 / \alpha} \mathrm{d} s=\infty
\end{align*}
$$

then equation (1.1) is oscillatory.
Proof. Let $x(t)$ be a nonoscillatory solution of equation (1.1), say, $x(t)>0$ for $t \geq t_{0} \geq 0$. Define the function $w(t)$ as in (3.5) with $\rho(t)=1$. Then we obtain

$$
\begin{equation*}
w^{\prime}(t) \leq-q(t)-\frac{L_{2 n-1} x(t)}{f^{2}(x(\lambda \sigma(t)))} \lambda \sigma^{\prime}(t) x^{\prime}(\lambda \sigma(t)), \quad t \geq t_{1} \geq t_{0} \tag{4.15}
\end{equation*}
$$

Using (3.4) and (3.1) in (4.15) we get

$$
\begin{equation*}
\left.w^{\prime}(t) \leq-q(t)-\lambda \bar{k} \sigma^{\prime}(t) H_{1}(\sigma(t), T ; a ; k ; \lambda) w^{1+1 / \alpha}\right)(t), \quad t \geq T \geq t_{1} \tag{4.16}
\end{equation*}
$$

Integrating (4.16) from $t(\geq T)$ to $u(\geq t)$ and letting $u \rightarrow \infty$ we obtain

$$
\begin{align*}
L_{2 n-1} x(t) \geq f & (x(\lambda \sigma(t)))(Q(t) \tag{4.17}\\
& \left.+\lambda \bar{k} \int_{t}^{\infty} H_{1}(\sigma(s), T ; a ; k ; \lambda) \sigma^{\prime}(s) w^{1+1 / \alpha}(s) \mathrm{d} s\right), \quad t \geq T
\end{align*}
$$

and

$$
\begin{equation*}
w(t) \geq Q(t), \quad t \geq T \tag{4.18}
\end{equation*}
$$

Using (3.4) and (4.18) in (4.17) we find

$$
\begin{aligned}
\frac{x^{\prime}(\lambda \sigma(t)) \lambda \sigma^{\prime}(t)}{f^{1 / \alpha}(x(\lambda \sigma(t)))} \geq \lambda \sigma^{\prime}(t) & H_{1}(\sigma(t), T ; a ; k ; \lambda)(Q(t) \\
& \left.+\lambda \bar{k} \int_{t}^{\infty} H_{1}(\sigma(s), T ; a ; k ; \lambda) \sigma^{\prime}(s) Q^{1+1 / \alpha}(s) d s\right)^{1 / \alpha}
\end{aligned}
$$

Integrating the above inequality from T to t and using condition (4.1) we obtain a contradiction to condition (4.14) and complete the proof.

Next we present the following theorem when condition (4.2) holds.
Theorem 4.5. Let conditions (1.2), (3.2) with $\sigma^{\prime}(t) \geq 0$ for $t \geq t_{0}$ and (4.2) hold. Moreover assume that

$$
\begin{equation*}
-f(-x y) \geq f(x y) \geq f(x) f(y) \text { for } x y>0 \tag{4.19}
\end{equation*}
$$

If for all large $T \geq t_{0}$ with $\sigma(t)>T / \lambda$ for some constant $\lambda, \lambda \in(0,1)$ and $k \in\{1,3, \ldots, 2 n-1\}$,

$$
\begin{equation*}
\int^{\infty} q(s) f\left(H_{0}(\sigma(s), T ; a ; k ; \lambda)\right) \mathrm{d} s=\infty, \tag{4.20}
\end{equation*}
$$

then equation (1.1) is oscillatory.
Proof. Let $x(t)$ be a nonoscillatory solution of equation (1.1), say, $x(t)>0$ for $t \geq t_{0} \geq 0$. As in the proof of Theorem 3.10 there exists a $T_{0} \geq T$ such that (3.43) holds for $t \geq T_{0}$.

Using (3.43) and (4.19) in equation (1.1) we get

$$
\begin{aligned}
(4.21)-L_{2 n} x(t) & =q(t) f(x(g(t))) \geq q(t) f(x(\sigma(t))) \\
& \geq q(t) f\left(H_{0}(\sigma(t), T ; a ; k ; \lambda) L_{2 n-1}^{1 / \alpha} x(t)\right) \\
& \geq q(t) f\left(H_{0}(\sigma(t), T ; a ; k ; \lambda)\right) f\left(L_{2 n-1}^{1 / \alpha} x(t)\right), \quad t \geq T_{0}
\end{aligned}
$$

Let $u(t)=L_{2 n-1} x(t)$ for $t \geq T_{0}$. We have

$$
\begin{equation*}
-\frac{\mathrm{d} u(t)}{\mathrm{d} t} \geq q(t) f\left(H_{0}(\sigma(t), T ; a ; k ; \lambda)\right) f\left(u^{1 / \alpha}(t)\right), \quad t \geq T_{0} \tag{4.22}
\end{equation*}
$$

Dividing both sides of (4.22) by $f\left(u^{1 / \alpha}(t)\right)$ and integrating from T_{0} to t we have

$$
\int_{T_{0}}^{t} q(s) f\left(H_{0}(\sigma(s), T ; a ; k ; \lambda)\right) \mathrm{d} s \leq \int_{t}^{T_{0}} \frac{u^{\prime}(s) \mathrm{d} s}{f\left(u^{1 / \alpha}(s)\right)}=\int_{u(t)}^{u\left(T_{0}\right)} \frac{\mathrm{d} u}{f\left(u^{1 / \alpha}\right)}
$$

Letting $t \rightarrow \infty$ we conclude that

$$
\int_{T_{0}}^{\infty} q(s) f\left(H_{0}(\sigma(s), T ; a ; k ; \lambda)\right) \mathrm{d} s \leq \int_{0}^{u\left(T_{0}\right)} \frac{\mathrm{d} u}{f\left(u^{1 / \alpha}\right)}<\infty
$$

which contradicts condition (4.20). This completes the proof.
Theorem 4.6. Let conditions (1.2), (3.2) with $\sigma^{\prime}(t) \geq 0$ for $t \geq t_{0}$, (3.10) with $\beta<\alpha$ and (3.37) hold. If for all constant $c>0, T \geq t_{0}$ with $\sigma(t)>T / \lambda$ for some constant $\lambda, \lambda \in(0,1)$ and $k \in\{1,3, \ldots, 2 n-1\}$,

$$
\begin{align*}
& \limsup _{t \rightarrow \infty} Q^{1 / \beta}(t) H_{0}(\sigma(t), T ; a ; k ; \lambda)(1 \tag{4.23}\\
&\left.\quad+\frac{c}{Q(t)} \int_{t}^{\infty} H_{1}(\sigma(s), T ; a ; k ; \lambda) \sigma^{\prime}(s) Q^{1+1 / \beta}(s) \mathrm{d} s\right)^{1 / \alpha}=\infty
\end{align*}
$$

then equation (1.1) is oscillatory.
Proof. Let $x(t)$ be a nonoscillatory solution of equation (1.1), say, $x(t)>0$ for $t \geq t_{0} \geq 0$. Define $w(t)=L_{2 n-1} x(t) / x^{\beta}(\lambda \sigma(t))$ for $t \geq t_{1} \geq t_{0}$. Then for $t \geq t_{1}$ we have

$$
w^{\prime}(t) \leq-q(t)-\lambda \beta \sigma^{\prime}(t) \frac{L_{2 n-1} x(t)}{x^{\beta+1}(\lambda \sigma(t))} x^{\prime}(\lambda \sigma(t))
$$

As in the proof of Theorems 3.1 and 3.10 we obtain (3.4) and (3.43), respectively, for $t \geq T_{0} \geq T \geq t_{1}$,

$$
\begin{equation*}
w^{\prime}(t) \leq-q(t)-\lambda \beta \sigma^{\prime}(t) w^{1+1 / \alpha}(t) x^{\beta / \alpha-1}(\lambda \sigma(t)), \quad t \geq T_{0} \tag{4.24}
\end{equation*}
$$

Integrating (4.24) from $t\left(\geq T_{0}\right)$ to u and letting $u \rightarrow \infty$ we find

$$
\begin{align*}
& L_{2 n-1} x(t) \geq x^{\beta}(\lambda \sigma(t))(Q(t) \tag{4.25}\\
& \left.+\lambda \beta \int_{t}^{\infty} \sigma^{\prime}(s) H_{1}(\sigma(s), T ; a ; k ; \lambda) w^{1+1 / \alpha}(s) x^{\beta / \alpha-1}(\lambda \sigma(s)) \mathrm{d} s\right), \quad t \geq T_{0}
\end{align*}
$$

and

$$
w(t) \geq Q(t), \quad t \geq T_{0}
$$

There exist a constant $c_{1}>0$ and a $T_{1} \geq T_{0}$ such that

$$
\begin{equation*}
L_{2 n-1} x(t) \leq c_{1}, \quad t \geq T_{1} \tag{4.26}
\end{equation*}
$$

Now for $t \geq T_{1}$ it follows from (4.25) and (4.26) that

$$
x^{\beta / \alpha}(\lambda \sigma(t)) \leq c_{1} Q^{1 / \alpha}(t) \quad \text { or } \quad x(\lambda \sigma(t)) \leq c_{1}^{\alpha / \beta} Q^{-1 / \beta}(t)
$$

and hence

$$
\begin{equation*}
x^{\beta / \alpha-1}(\lambda \sigma(t)) \geq c_{1}^{1-\alpha / \beta} Q^{1 / \beta-1 / \alpha}(t), \quad t \geq T_{1} \tag{4.27}
\end{equation*}
$$

Using (4.27) in (4.25) yields

$$
\begin{align*}
L_{2 n-1}^{1 / \alpha} x(t) \geq & x^{\beta / \alpha}(\lambda \sigma(t))(Q(t) \tag{4.28}\\
& \left.+\lambda \beta c_{1}^{1-\alpha / \beta} \int_{t}^{\infty} H_{1}(\sigma(s), T ; a ; k ; \lambda) \sigma^{\prime}(s) Q^{1+1 / \beta}(s) \mathrm{d} s\right)^{1 / \alpha}
\end{align*}
$$

Using (3.43) in (4.28) we obtain for $T \geq T_{1}$

$$
\begin{aligned}
& x(\lambda \sigma(t)) \geq H_{0}(\sigma(t), T ; a ; k ; \lambda) L_{2 n-1}^{1 / \alpha} x(t) \\
& \geq x^{\beta / \alpha}(\lambda \sigma(t)) H_{0}(\sigma(t), T ; a ; k ; \lambda)(Q(t) \\
& \left.\quad \quad+\lambda \beta c_{1}^{\beta / \alpha-1} \int_{t}^{\infty} H_{1}(\sigma(s), T ; a ; k, \lambda) \sigma^{\prime}(s) Q^{1+1 / \beta}(s) \mathrm{d} s\right)^{1 / \alpha}
\end{aligned}
$$

or

$$
\begin{aligned}
x^{1-\beta / \alpha}(\lambda \sigma(t)) & \geq H_{0}(\sigma(t), T ; a ; k ; \lambda) Q^{1 / \alpha}(t)(1+ \\
& \left.\frac{\lambda \beta c_{1}^{1-\alpha / \beta}}{Q(t)} \int_{t}^{\infty} H_{1}(\sigma(s), T ; a ; k, \lambda) \sigma^{\prime}(s) Q^{1+1 / \beta}(s) \mathrm{d} s\right)^{1 / \alpha}
\end{aligned}
$$

Using (4.27) in the above inequality one can easily see that

$$
\begin{aligned}
c_{1}^{\alpha / \beta-1} & \geq Q^{1 / \beta}(t) H_{0}(\sigma(t), T ; a ; k ; \lambda)(1 \\
& \left.+\frac{\lambda \beta c_{1}^{1-\alpha / \beta}}{Q(t)} \int_{t}^{\infty} H_{1}(\sigma(s), T ; a ; k, \lambda) \sigma^{\prime}(s) Q^{1+1 / \beta}(s) \mathrm{d} s\right)^{1 / \alpha}, t \geq T_{1}
\end{aligned}
$$

Taking limsup of both sides of this inequality as $t \rightarrow \infty$ we obtain a contradiction to condition (4.23). This completes the proof.

5. NECESSARY AND SUFFICIENT CONDITIONS

In this section we are interested to establish some necessary and sufficient conditions for the oscillation of equation (1.1). Here for $t \geq T \geq t_{0}$ we let

$$
H_{*}(t, T ; a)=\int_{T}^{t} \frac{(t-u)^{n-1}}{(n-1)!}\left(\frac{(u-T)^{n-1}}{(n-1)!a(u)}\right)^{1 / \alpha} \mathrm{d} u
$$

Theorem 5.1. Let condition (1.2) hold, $f(x) \operatorname{sgn} x=|x|^{\beta}$ for $x \neq 0$ and $\beta<$ $\alpha, g(t) \leq t$ and $g^{\prime}(t) \geq 0$ for $t \geq t_{0}$. Equation (1.1) is oscillatory if and only if for all large $T \geq t_{0}$

$$
\begin{equation*}
\int^{\infty} q(s) H_{*}^{\beta}(g(s), T ; a) \mathrm{d} s=\infty . \tag{5.1}
\end{equation*}
$$

Proof. Let $x(t)$ be a nonoscillatory solution of equation (1.1), say, $x(t)>0$ for $t \geq t_{0} \geq 0$. The proof of the "if" part is similar to that of Theorem 4.5 and we omit the details. To prove the "only if" part it suffices to assume that for all large $\bar{T} \geq t_{0}$

$$
\begin{equation*}
\int^{\infty} q(s) H_{*}^{\beta}(g(s), \bar{T} ; a) \mathrm{d} s<\infty \tag{5.2}
\end{equation*}
$$

and to show the existence of a nonoscillatory solution of equation (1.1). Here we give an outline of the proof.

Let $c>0$ be an arbitrary constant and choose $T \geq \bar{T}$ sufficiently large so that

$$
\begin{equation*}
\int_{T}^{\infty} q(s) H_{*}^{\beta}(g(s), \bar{T} ; a) \mathrm{d} s \leq 2^{-1 / 2} c^{1-\beta / \alpha} . \tag{5.3}
\end{equation*}
$$

Define the set X by

$$
\begin{equation*}
X=\left\{x \in C[T, \infty): c_{1} H_{*}(t, T ; a) \leq x(t) \leq c_{2} H_{*}(t, T ; a), \quad t \geq T\right\} \tag{5.4}
\end{equation*}
$$

which is a closed convex subset of the locally convex space $C[T, \infty)$ of continuous functions on $[T, \infty)$ equipped with the topology of uniform convergence on compact subintervals of $[T, \infty)$, where c_{1} and c_{2} denote the positive constants

$$
\begin{equation*}
c_{1}=c^{1 / \alpha} \text { and } c_{2}=(2 c)^{1 / \alpha} . \tag{5.5}
\end{equation*}
$$

Consider the integral operator \mathcal{T} defined by

$$
\begin{align*}
\mathcal{T} x(t)= & \int_{T}^{t} \frac{(t-s)^{n-1}}{(n-1)!}\left(\frac { 1 } { a (s) } \left(c \frac{(s-T)^{n-1}}{(n-1)!}\right.\right. \tag{5.6}\\
& \left.\left.\quad+\int_{T}^{s} \frac{(s-u)^{n-2}}{(n-2)!} \int_{u}^{\infty} q(\tau) x^{\beta}(g(\tau)) \mathrm{d} \tau \mathrm{~d} u\right)^{1 / \alpha}\right) \mathrm{d} s, \quad t>T
\end{align*}
$$

Using (5.3) and (5.5) we see that \mathcal{T} maps X into itself. If $\left\{x_{j}\right\}$ is a sequence in X converging to x_{0} in $C[T, \infty)$, then from the Lebesgue Monotone Convergence Theorem it follows that $\left\{\mathcal{T} x_{j}\right\}$ converges to $\mathcal{T} x_{0}$ in $C[T, \infty)$ so that \mathcal{T} is a continuous mapping. Since $\mathcal{T}(X)$ and $\mathcal{T}^{\prime}(X)=\left\{(\mathcal{T} x)^{\prime}(t): x \in X\right\}$ are locally bounded in $[T, \infty)$, the Ascoli-Arzela Theorem implies that $\mathcal{T}(X)$ is relatively compact in $C[T, \infty)$. Thus all the hypotheses of Schauder-Tychonov fixed point theorem are satisfied and so there exists an element $x \in X$ such that $x=\mathcal{T} x$. Differentiating the integral equation $x=\mathcal{T} x$ we conclude that $x=x(t)$ is a positive solution of equation (1.1) on $[T, \infty)$ such that $\lim _{t \rightarrow \infty} x(t) / H_{*}(t, T ; a)=c$. This completes the proof.

Before we prove the next result we state the following theorem.
Theorem 5.2. Let condition (1.2) hold. If

$$
\begin{equation*}
\int^{\infty} s^{n-1}\left(\frac{1}{a(s)} \int_{s}^{\infty} u^{n-1} q(u) \mathrm{d} u\right)^{1 / \alpha} \mathrm{d} s=\infty \tag{5.7}
\end{equation*}
$$

then equation (1.1) is oscillatory.
Proof. The proof is immediate.
Theorem 5.3. Let condition (1.2) hold, $f(x) \operatorname{sgn} x=|x|^{\beta}$ for $x \neq 0$ and $\beta>$ $\alpha, g(t) \leq t$ and $g^{\prime}(t) \geq 0$ for $t \geq t_{0}$. Equation (1.1) is oscillatory if and only if (5.7) holds.

Proof. Let $x(t)$ be a nonoscillatory solution of equation (1.1), say, $x(t)>0$ for $t \geq t_{0} \geq 0$. The proof of the "if" part is the same as that of Theorem 5.2 and hence is omitted. The "only if" part is proved as follows: Let $c>0$ be given arbitrarily and choose $T \geq t_{0}$ so that

$$
\int_{T}^{\infty} \frac{t^{n-1}}{(n-1)!}\left(\frac{1}{a(t)} \int_{t}^{\infty} \frac{(s-t)^{n-1}}{(n-1)!} q(s) \mathrm{d} s\right)^{1 / \alpha} \mathrm{d} t<\frac{1}{2} c^{1-\beta / \alpha}
$$

We define the set Y and the mapping \mathcal{S} by

$$
Y=\left\{x \in C[T, \infty): \frac{c}{2} \leq x(t) \leq c, t \geq T\right\}
$$

and

$$
\mathcal{S} x(t)=c-\int_{t}^{\infty} \frac{(s-t)^{n-1}}{(n-1)!}\left(\frac{1}{a(s)} \int_{s}^{\infty} \frac{(u-s)^{n-1}}{(n-1)!} q(u) x^{\beta}(g(u)) \mathrm{d} u\right)^{1 / \alpha} d s, \quad t \geq T,
$$

respectively. Then it is easy to show that \mathcal{S} maps Y into itself, that \mathcal{S} is a continuous mapping and $\mathcal{S}(Y)$ is relatively compact in $C[T, \infty)$. Therefore by the SchauderTychonov fixed point theorem there exists an element $x \in Y$ such that $x=\mathcal{S} x$. It is clear that the fixed point $x=x(t)$ gives a positive solution of equation (1.1) on $[T, \infty)$ such that $\lim _{t \rightarrow \infty} x(t)=c$. This completes the proof.

6. MORE COMPARISON RESULTS

In this section we compare the inequality

$$
\begin{equation*}
L_{2 n} x(t)+q(t) f(x(g(t))) \leq 0 \quad(\geq 0) \tag{6.1}
\end{equation*}
$$

with equation (1.1). In fact we establish the following theorem.
Theorem 6.1. Let condition (1.2) hold. If inequality (4.1) has an eventually positive (negative) solution, then equation (1.1) also has an eventually positive (negative) solution.
Proof. Let $x(t)$ be an eventually positive solution of inequality (6.1), say, $x(t)>0$ for $t \geq t_{0} \geq 0$. According to Lemma 2.1 there exist a $t_{1} \geq t_{0}$ and an integer $k \in\{1,3, \ldots, 2 n-1\}$ such that inequalities (2.1) hold. Here we distinguish the following three cases: (I) $k=2 n-1$, (II) $n+1 \leq k \leq 2 n-3$, (III) $1 \leq k \leq n$. For this, when we integrate inequality (6.1) from t to $u\left(\geq t \geq t_{1}\right)$ and let $u \rightarrow \infty$, we have

$$
\begin{equation*}
L_{2 n-1} x(t) \geq \int_{t}^{\infty} q(s) f(x(g(s))) \mathrm{d} s \tag{6.2}
\end{equation*}
$$

Case (I) Let $k=2 n-1$. Integrating (6.2) $(n-1)$ times from t_{1} to t we obtain

$$
\begin{align*}
x^{(n)}(t) & \geq\left(\frac{1}{a(t)} \int_{t_{1}}^{t} \int_{t_{1}}^{s_{n+1}} \cdots \int_{t_{1}}^{s_{2 n-2}} \int_{s_{2 n-1}}^{\infty} q(s) f(x(g(s))) \mathrm{d} s \mathrm{~d} s_{2 n-1} \cdots \mathrm{~d} s_{n+1}\right)^{1 / \alpha} \tag{6.3}\\
& :=\Phi_{1}(t ; x(g(t))) \text { for } t \geq t_{1}
\end{align*}
$$

from which after integrating n times from t_{1} to t it follows that

$$
\begin{align*}
x(t) & \geq x\left(t_{1}\right)+\int_{t_{1}}^{t} \int_{t_{1}}^{s_{1}} \cdots \int_{t_{1}}^{s_{n-1}} \Phi_{1}\left(s_{n}, x\right) \mathrm{d} s_{n} \mathrm{~d} s_{n-1} \cdots \mathrm{~d} s_{1} \tag{6.4}\\
& :=x\left(t_{1}\right)+\Psi_{1}(t ; x(g(t))) \text { for } t \geq t_{1} .
\end{align*}
$$

Case (II) Let $n+1 \leq k \leq 2 n-3$. Integrating (6.2) ($2 n-k-1$) times from t to $u(\geq t)$ and letting $u \rightarrow \infty$ yield

$$
(-1)^{2 n-k-1} L_{k} x(t) \geq \int_{t}^{\infty} \int_{s_{2 n-k-1}}^{\infty} \cdots \int_{s_{2 n-1}}^{\infty} q(s) f(x(g(s))) \mathrm{d} s \mathrm{~d} d s_{2 n-1} \cdots \mathrm{~d} s_{2 n-k-1}
$$

Integrating this inequality $(k-n)$ times from t_{1} to t we have

$$
\begin{align*}
x^{(n)}(t) \geq & \left(\frac{1}{a(t)} \int_{t_{1}}^{t} \int_{t_{1}}^{s_{n+1}} \cdots \int_{t_{1}}^{s_{2 n-k-3}} \int_{s_{2 n-k-2}}^{\infty}\right. \tag{6.5}\\
& \left.\cdots \int_{s_{2 n-1}}^{\infty} q(s) f(x(g(s))) \mathrm{d} s \mathrm{~d} s_{2 n-1} \cdots \mathrm{~d} s_{n+1}\right)^{1 / \alpha} \\
:= & \Phi_{2}(t ; x(g(t))) \text { for } t \geq t_{1} .
\end{align*}
$$

Integrating (6.5) n times from t_{1} to t we get

$$
\begin{align*}
x(t) & \geq x\left(t_{1}\right)+\int_{t_{1}}^{t} \int_{t_{1}}^{s_{1}} \cdots \int_{t_{1}}^{s_{n-1}} \Phi_{2}\left(s_{n} ; x\left(g\left(s_{n}\right)\right)\right) \mathrm{d} s_{n} \mathrm{~d} s_{n-1} \cdots \mathrm{~d} s_{1} \tag{6.6}\\
& :=x\left(t_{1}\right)+\Psi_{2}(t ; x(g(t))) \text { for } t \geq t_{1} .
\end{align*}
$$

Case (III) Let $1 \leq k \leq n$. Integrating (6.2) $(n-1)$ times from t to $u(\geq t)$ and letting $u \rightarrow \infty$ we have

$$
\begin{align*}
(-1)^{n} x^{(n)}(t) \geq & \left(\frac{1}{a(t)} \int_{t}^{\infty} \int_{s_{n+1}}^{\infty}\right. \tag{6.7}\\
& \left.\cdots \int_{s_{2 n-1}}^{\infty} q(s) f(x(g(s))) \mathrm{d} s \mathrm{~d} s_{2 n-1} \cdots \mathrm{~d} s_{n+1}\right)^{1 / \alpha} \\
:= & \Phi_{3}(t ; x(g(t))) \text { for } t \geq t_{1} .
\end{align*}
$$

Integrating (6.7) $(n-k)$ times from t to $u(\geq t)$ and letting $u \rightarrow \infty$ we have

$$
(-1)^{2 n-k-1} L_{k} x(t) \geq \int_{t}^{\infty} \int_{s_{k-1}}^{\infty} \cdots \int_{s_{n-1}}^{\infty} \Phi_{3}\left(s_{n} ; x\left(g\left(s_{n}\right)\right)\right) \mathrm{d} s_{n} \mathrm{~d} s_{n-1} \cdots \mathrm{~d} s_{k-1} .
$$

Further repeated integration of the above inequality shows that

$$
\begin{align*}
x(t) & \geq x\left(t_{1}\right)+\int_{t_{1}}^{t} \int_{t_{1}}^{s_{1}} \cdots \int_{t_{1}}^{s_{k-1}} \int_{s_{k}}^{\infty} \cdots \int_{s_{n-1}}^{\infty} \Phi_{3}\left(s_{n} ; x\left(g\left(s_{n}\right)\right)\right) \mathrm{d} s_{n} \cdots \mathrm{~d} s_{1} \tag{6.8}\\
& :=x\left(t_{1}\right)+\Psi_{3}(t ; x(g(t))) \text { for } t \geq t_{1} .
\end{align*}
$$

Now it is easy to show the existence of a positive solution to the integral equation

$$
\begin{equation*}
y_{i}(t)=c+\Psi_{i}\left(t, y_{i}[g(t)]\right) \text { for } t \geq t_{1} \text { and } i=1,2,3 \tag{6.9}
\end{equation*}
$$

where $c=x\left(t_{1}\right)$.

We define $y_{i, n}(t), i=1,2,3$ and $n=0,1, \ldots$, as

$$
\begin{aligned}
y_{i, 0}(t) & =x(t) \\
y_{i, n+1}(t) & =\left\{\begin{array}{l}
c+\Psi_{i}\left(t, y_{i, n}(g(t))\right) \text { for } t \geq t_{1} \text { and } i=1,2,3 \\
c \text { for } t_{0} \leq t \leq t_{1} .
\end{array}\right.
\end{aligned}
$$

Thus $y_{i, n}(t)$ is well-defined and for $t \geq t_{1}, i=1,2,3$ and $n=1,2, \ldots$, we get

$$
0<y_{i, n}(t) \leq x(t), \quad c \leq y_{i, n+1}(t) \leq y_{i, n}(t)
$$

By Lebesgue's Monotone Convergence Theorem there exists $y_{i}(t)$ such that $y_{i}(t)=$ $\lim _{n \rightarrow \infty} y_{i, n}(t)$ for $t \geq t_{1}$ and

$$
y_{i}(t)=c+\Psi_{i}\left(t, y_{i}[g(t)]\right) \text { for } t \geq t_{1} .
$$

It is easy to verify that $y_{i}(t)$ is a solution of equation (1.1) for $t \geq t_{1}$ and $i=1,2,3$.
Next we employ Theorem 6.1 to extend the results obtained to the neutral differential equation

$$
\begin{equation*}
L_{2 n}(x(t)+p(t) x(\sigma(t))+q(t) f(x(g(t)))=0 \tag{6.10}
\end{equation*}
$$

where the operator $L_{2 n}$ and the functions g, f and q are as in equation (1.1), and (v) $p(t)$ and $\sigma(t) \in C\left(\left[t_{0}, \infty\right), \mathbb{R}\right), \sigma^{\prime}(t)>0$ for $t \geq t_{0}$ and $\lim _{t \rightarrow \infty} \sigma(t)=\infty$.

In fact we prove the following comparison results.
Theorem 6.2. Let conditions (1.2) and (4.19) hold, $0 \leq p(t) \leq 1, p(t) \not \equiv 0$ or $p(t) \not \equiv 1$ eventually, and $\sigma(t)<t$ for $t \geq t_{0}$. If the equation

$$
\begin{equation*}
L_{2 n} y(t)+q(t) f(1-p(g(t))) f(y(g(t)))=0 \tag{6.11}
\end{equation*}
$$

is oscillatory, then equation (6.10) is oscillatory.
Theorem 6.3. Let conditions (1.2) and (4.19) hold, $p(t) \geq 1, p(t) \not \equiv 1$ eventually and $\sigma(t)>t$ for $t \geq t_{0}$. If the equation

$$
\begin{equation*}
L_{2 n} z(t)+q(t) f\left(p^{*}(g(t))\right) f\left(z\left(\sigma^{-1} \circ g(t)\right)\right)=0 \tag{6.12}
\end{equation*}
$$

where

$$
p^{*}(t)=\frac{1}{p\left(\sigma^{-1}(t)\right)}\left(1-\frac{1}{p\left(\sigma^{-1} \circ \sigma^{-1}(t)\right)}\right) \quad \text { for } t \geq t_{0}
$$

and σ^{-1} is the inverse function of σ, is oscillatory, then equation (6.10) is oscillatory.
Proofs of Theorems 6.2 and 6.3. Let $x(t)$ be a nonoscillatory solution of equation (6.10), say, $x(t)>0$ for $t \geq t_{0} \geq 0$. Set $y(t)=x(t)+p(t) x(\sigma(t))$. Then equation (6.10) becomes

$$
\begin{equation*}
L_{2 n} y(t)+q(t) f(x(g(t)))=0 \text { for } t \geq t_{0} \tag{6.13}
\end{equation*}
$$

It is easy to check that there exists a $t_{1} \geq t_{0}$ such that

$$
\begin{equation*}
y(t)>0 \text { and } y^{\prime}(t)>0 \text { for } t \geq t_{1} \tag{6.14}
\end{equation*}
$$

Next we assume that $0 \leq p(t) \leq 1$ and $\sigma(t)<t$ for $t \geq t_{0}$. Now

$$
\begin{align*}
x(t) & =y(t)-p(t) x(\sigma(t)) \tag{6.15}\\
& =y(t)-p(t)(y(\sigma(t))-p(\sigma(t)) x(\sigma \circ \sigma(t))) \\
& \geq y(t)-p(t) y(\sigma(t)) \geq(1-p(t)) y(t) \text { for } t \geq t_{1}
\end{align*}
$$

Using (6.15) and (4.19) in equation (6.13) we have

$$
\begin{equation*}
L_{2 n} y(t)+q(t) f(1-p(g(t))) f(y(g(t))) \leq 0 \text { for } t \geq t_{1} \tag{6.16}
\end{equation*}
$$

Next we assume that $p(t) \geq 1$ and $\sigma(t)>t$ for $t \geq t_{0}$. Now

$$
\begin{align*}
x(t) & =\frac{1}{p\left(\sigma^{-1}(t)\right)}\left(y\left(\sigma^{-1}(t)\right)-x\left(\sigma^{-1}(t)\right)\right) \tag{6.17}\\
& =\frac{y\left(\sigma^{-1}(t)\right)}{p\left(\sigma^{-1}(t)\right)}-\frac{1}{p\left(\sigma^{-1}(t)\right)}\left(\frac{y\left(\sigma^{-1} \circ \sigma^{-1}(t)\right)}{p\left(\sigma^{-1} \circ \sigma^{-1}(t)\right)}-\frac{x\left(\sigma^{-1} \circ \sigma^{-1}(t)\right)}{p\left(\sigma^{-1} \circ \sigma^{-1}(t)\right)}\right) \\
& \geq \frac{y\left(\sigma^{-1}(t)\right)}{p\left(\sigma^{-1}(t)\right)}-\frac{y\left(\sigma^{-1} \circ \sigma^{-1}(t)\right)}{p\left(\sigma^{-1}(t)\right) p\left(\sigma^{-1} \circ \sigma^{-1}(t)\right)} \\
& \left.\geq \frac{1}{p\left(\sigma^{-1}(t)\right)}\left(1-\frac{1}{p\left(\sigma^{-1} \circ \sigma^{-1}(t)\right)}\right)\right) y\left(\sigma^{-1}(t)\right) \\
& :=p^{*}(t) y\left(\sigma^{-1}(t)\right) \text { for } t \geq t_{1} .
\end{align*}
$$

Using (6.17) and (4.19) in equation (6.12) we obtain

$$
\begin{equation*}
L_{2 n} y(t)+q(t) f\left(f^{*}(g(t))\right) f\left(y\left(\sigma^{-1} \circ g(t)\right)\right) \leq 0 \text { for } t \geq t_{1} \tag{6.18}
\end{equation*}
$$

Inequalities (6.16) and (6.18) have eventually positive solutions and so by Theorem 6.1 equations (6.11) and (6.12) have also eventually positive solutions, which contradicts the hypotheses and completes the proof.

Next we extend the results obtained to equation (1.1) when the function f need not be monotonic.

We need the following notations and a Lemma due to MAhFoud [16].

$$
\mathbb{R}_{t_{0}}= \begin{cases}\left(-\infty,-t_{0}\right] \cup\left[t_{0}, \infty\right) & \text { if } t_{0}>0 \\ (-\infty, 0) \cup(0, \infty) & \text { if } t_{0}=0\end{cases}
$$

and

$$
C_{B}\left(\mathbb{R}_{t_{0}}\right)=\left\{f \in C(\mathbb{R}): f \text { is of bounded variation on any interval }[a, b] \subset \mathbb{R}_{t_{0}}\right\}
$$

Lemma 6.1. Suppose $t_{0} \geq 0$ and $f \in C(\mathbb{R})$. Then $f \in C_{B}\left(\mathbb{R}_{t_{0}}\right)$ if and only if $f(x)=H(x) G(x)$ for all $x \in \mathbb{R}$, where $G: \mathbb{R}_{t_{0}} \rightarrow \mathbb{R}^{+}$is nondecreasing on $\left(-\infty,-t_{0}\right)$ and nonincreasing on $\left(t_{0}, \infty\right)$ and $H: \mathbb{R}_{t_{0}} \rightarrow \mathbb{R}$ is nondecreasing on $\mathbb{R}_{t_{0}}$.

Now we prove the following result.
Theorem 6.4. Let condition (1.2) hold and assume that $f \in C_{B}\left(\mathbb{R}_{t_{0}}\right), t_{0} \geq 0$ and let the functions G and H be a pair of continuous components of f with H being the nondecreasing one. If for all large T with $g(t)>T$ and all constant $c>0$, the equation

$$
\begin{equation*}
L_{2 n} x(t)+q(t) G(c \phi(g(t), T ; a)) H(x(g(t)))=0 \tag{6.19}
\end{equation*}
$$

is oscillatory, where the function ϕ is as in (3.13), then equation (1.1) is oscillatory.
Proof. Let $x(t)$ be a nonoscillatory solution of equation (1.1), say, $x(t)>0$ for $t \geq t_{0} \geq 0$. As in the proof of Theorem 3.3 we obtain (3.15) for $t \geq T_{1}$. There exists a $T_{2} \geq T \geq T_{1}$ such that $g(t)>T$ and

$$
\begin{equation*}
x(g(t)) \geq b \phi(g(t), T ; a) \text { for } t \geq T \tag{6.20}
\end{equation*}
$$

Using (6.20) in equation (1.1) we have

$$
\begin{align*}
-L_{2 n} x(t) & =q(t) f(x(g(t)))=q(t) G(x(g(t))) H(x(g(t))) \tag{6.21}\\
& \geq q(t) G(b \phi(g(t), T ; a)) H(x(g(t))) \text { for } t \geq T_{2}
\end{align*}
$$

The inequality (6.21) has an eventually positive solution and so by Theorem 6.1 equation (6.19) has also an eventually positive solution, which contradicts the hypotheses and completes the proof.

As examples of functions $f(x)$ which are not monotonic we give the following:
(i) $\quad f(x)=\frac{|x|^{\beta-1} x}{1+|x|^{\gamma}}$, where β and γ are positive constants,
(ii) $f(x)=|x|^{\beta-1} x \exp \left(-|x|^{\gamma}\right)$, where β and γ are positive constants,
(iii) $f(x)=|x|^{\beta-1} x \operatorname{sech} x$, where β is a positive constant.

We may note that the above results are not applicable to equation (1.1) with any one of the above choices of f.

Remarks.

1. The results of this paper are presented in a form which is essentially new and of a higher degree of generality. In fact one can easily extract more criteria than those presented for the oscillation of equation (1.1) and/or related equations. The formulation of such criteria is left to the reader.
2. The results of this paper may be extended to forced equations of the form

$$
L_{2 n} x(t)+q(t) f(x(g(t)))=e(t)
$$

where $e \in C\left(\left[t_{0}, \infty\right), \mathbb{R}\right)$.

REFERENCES

1. R. P. Agarwal, S. R. Grace: Oscillation of forced functional differential equations generated by advanced arguments. Aequations Math., 63 (2002), 26-45.
2. R. P. Agarwal, S. R. Grace, I. Kiguradze, D. O'Regan: Oscillation of functional differential equations. Math. Comput. Modelling, 41 (2005), 417-461.
3. R. P. Agarwal, S. R. Grace, D. O'Regan: Oscillation Theory for Difference and Functional Differential Equations. Kluwer, Dordrecht, 2000.
4. R. P. Agarwal, S. R. Grace, D. O'Regan: Oscillation Theory for Second Order Linear, Half-Linear, Superlinear and Sublinear Dynamic Equations. Kluwer, Dordrecht, 2002.
5. R. P. Agarwal, S. R. Grace, D. O'Regan: Oscillation Theory for Second Order Dynamic Equations. Taylor \& Francis, U.K., 2003.
6. R. P. Agarwal, S. R. Grace and D. O'Regan: Oscillation criteria for n-th order differential equations with deviating arguments. J. Math. Anal. Appl., 262 (2001), 601-622.
7. S. R. Grace: Oscillation of even order nonlinear functional differential equations with deviating arguments. Funkcial. Ekvac., 32 (1989), 265-272.
8. S. R. Grace: Comparison theorems for forced functional differential equations. J. Math. Anal. Appl., 144 (1989), 168-182.
9. S. R. Grace: Oscillation criteria for forced functional differential equations with deviating arguments. J. Math. Anal. Appl., 145(1990), 63-88.
10. S. R. Grace: Oscillation of functional differential equations with deviating arguments. J. Math. Anal. Appl., 149 (1990), 558-575.
11. S. R. Grace: Oscillatory properties of functional differential equations. J. Math. Anal. Appl., 160 (1991), 60-78.
12. S. R. Grace: Oscillatory and asymptotic behavior of delay differential equations with a nonlinear damping term. J. Math. Anal. Appl., 168 (1992), 306-318.
13. S. R. Grace, B. S. Lalli: A comparison theorem for general nonlinear ordinary differential equations. J. Math. Anal. Appl., 120 (1986), 39-43.
14. S. R. Grace, B. S. Lalli: Oscillation theorems for n-th order nonlinear differential equations with deviating arguments. Proc. Amer. Math. Soc., 90 (1984), 65-90.
15. G. H. Hardy, J. E. Littlewood, G. Polya: Inequalities. Second Edition, Cambridge University Press, Cambridge, 1988.
16. G. Ladas: Oscillation and asymptotic behavior of solutions of differential equations with retarded argument. J. Differential Equations, 10 (1971), 281-290.
17. W. E. Mahfoud: Oscillatory and asymptotic behavior of solutions of N-th order nonlinear delay differential equations. J. Differential Equations, 24 (1977), 75-98.
18. W. E. Mahfoud: Characterization of oscillation of solutions of the delay equation $x^{(n)}(t)+a(t) f(x(q(t)))=0$. J. Differential Equations, 28 (1978), 437-451.
19. P. Mardiak: Note on Ladas' paper on oscillation and asymptotic behavior of solutions of differential equations with retarded argument. J. Differential Equations, 13 (1973), 150-156.
20. Сh. G. Philos: On the existence of nonoscillatory solutions tending to zero at ∞ for differential equations with positive delays. Arch. Math., 36 (1981), 168-178.
21. P. Waltman: A note on an oscillation criterion for an equation with a functional argument. Canad. Math. Bull., 11 (1968), 593-595.

Department of Mathematical Sciences, Florida Institute of Technology, Melbourne, FL 32901,
U.S.A.

Email: agarwal@fit.edu
Department of Engineering Mathematics, Faculty of Engineering,
Cairo University,
Orman, Giza 12221,
Egypt.
Email: srgrace@eng.cu.edu.eg
School of Electrical and Electronic Engineering,
Nanyang Technological University,
50 Nanyang Avenue,
Singapore 639798,
Singapore
Email: ejywong@ntu.edu.sg
(Received May 24, 2007)
(Revised November 7, 2007)

