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SCORE SETS IN ORIENTED GRAPHS

S. Pirzada, T. A. Naikoo

The score of a vertex v in an oriented graph D is av = n−1+d+
v −d−

v , where d+
v

and d−

v are the outdegree and indegree respectively of v and n is the number
of vertices in D. The set of distinct scores of the vertices in an oriented graph
D is called its score set. If a > 0 and d > 1 are positive integers, we show
there exists an oriented graph with score set {a, ad, ad2, . . . , adn} except for
a = 1, d = 2, n > 0, and for a = 1, d = 3, n > 0. It is also shown that there
exists no oriented graph with score set {a, ad, ad2, . . . , adn}, n > 0 when
either a = 1, d = 2, or a = 1, d = 3. Also we prove for the non-negative
integers a1, a2, . . . , an with a1 < a2 < · · · < an, there is always an oriented
graph with an + 1 vertices with score set {a′

1, a
′

2, . . . , a
′

n}, where

a
′

i =

{
ai−1 + ai + 1, for i > 1,

ai, for i = 1.

1. INTRODUCTION

An oriented graph is a digraph with no symmetric pairs of directed arcs and
without loops. Let D be an oriented graph with set V = {v1, v2, . . . , vn}, and let
d+

v and d−v respectively be the outdegree and indegree of vertex vi. Define avi
(or

simply ai)= n − 1 + d+
v − d−v , as the score of vi. Clearly, 0 ≤ avi

≤ 2n − 2. The
sequence A = [a1, a2, . . . , an] in non-decreasing order is the score sequence of an
oriented graph D.

For any two distinct vertices u and v in an oriented graph D, we have one
of the following possibilities. (i). An arc directed from u to v denoted by u → v.
(ii). An arc directed from v to u denoted by u ← v. (iii). There is no arc from u
to v and there is no arc from v to u. This is denoted by u ∼ v.

Let D be an oriented graph with vertex set V and let X, Y ⊆ V . If there is
an arc from each vertex of X to every vertex of Y, then it is denoted by X → Y .
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If d∗v is the number of those vertices u in D which have v ∼ u, then d+
v +

d−v + d∗v = n − 1. Therefore av = 2d+
v + d∗v. This implies that each vertex u with

v → u contributes two to the score of v and each vertex u with v ∼ u contributes
one to the score of v. Since the number of arcs and non-arcs in an oriented graph

of order n is
(n
2

)

and each v ∼ u contributes two (one each at u and v) to scores,

the sum total of all the scores is 2
(
n
2

)

= n(n− 1).

The following result [1, Theorem 2.1] characterizes score sequences of all
oriented graphs.

Theorem 1.1. A non-decreasing sequence of non-negative integers A = [a1, a2, . . . ,
an] is the score sequence of an oriented graph if and only if

(1.1)
k∑

i=1

ai ≥ k(k − 1)

for 1 ≤ k ≤ n with equality when k = n.

A tournament is an orientation of a complete simple graph. The score sv of a
vertex v in a tournament T is the outdegree of v. The score sequence of a tournament
is formed by listing the vertex scores in non-decreasing order. The set S of distinct
scores of the vertices in a tournament T is called its score set. Reid [5] conjectured
that every finite set S of non-negative integers is a score set of some tournament and
verified this conjecture for |S| = 1, 2, 3 or S is in arithmetic or geometric progression.
Hager [2] verified Reid’s conjecture for the cases |S| = 4, 5. In 1986 Yao proved
Reid’s conjecture by pure arithmetical analysis which appeared in Chinese [6] in
1986 and in English [7] in 1989. Recently Pirzada and Naikoo [3] proved by

construction that the set of non-negative integers S = {s1,
2∑

i=1

si, . . . ,
n∑

i=1

si}, with

s1 < s2 < · · · < sn, is a score set of some tournament. In [4] it has been proved that
every set of n non-negative integers, except {0} and {0, 1}, is a score set of some
3-partite tournament. Also it is shown that every set of n non-negative integers is
a score set of some k-partite tournament for every n ≥ k ≥ 2.

2. SCORE SETS IN ORIENTED GRAPHS

We start with the following observation:

Lemma 2.1. The number of vertices in an oriented graph with at least two distinct

scores does not exceed its largest score.

Proof. Clearly an oriented graph with at least two distinct scores has more than
one vertex. Let D be an oriented graph with n > 1 vertices, say v1, v2, . . . , vn with
their respective scores av1

, av2
, . . . , avn

such that av1
≤ av2

≤ · · · ≤ avn
. We assume

without loss of generality that the scores avi
and avn

are distinct so that avi
< avn

for some i, where 1 ≤ i ≤ n− 1.
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Therefore for all j, where 1 ≤ j ≤ i, we have avj
< avn

, which gives avn
≥

avj
+ 1, and for all k, where i + 1 ≤ k ≤ n− 1, we have avk

≤ avn
.

Claim n ≤ avn
.

Assume to the contrary that n > avn
. Then for all j, where 1 ≤ j ≤ i, we

have n > avj
+1, which gives n−1 ≥ avj

+1, and for all k, where i+1 ≤ k ≤ n−1,
we have n > avk

, which gives n− 1 ≥ avk
. Also, n− 1 ≥ avn

.

Thus

n− 1 ≥ av1
+ 1, . . . , n− 1 ≥ avi

+ 1, n− 1 ≥ avi+1
, . . . , n− 1 ≥ avn

.

Adding these inequalities we have

n(n− 1) ≥
n∑

r=1

avr
+ i.

Since [av1
, av2

, . . . , avn
] is the score sequence of D, by Theorem 1.1 we have

n∑

r=1

avr
= n(n− 1).

Thus n(n − 1) ≥ n(n − 1) + i so that i ≤ 0, which is a contradiction since
1 ≤ i ≤ n− 1. This establishes the claim. �

Now we obtain the following result:

Theorem 2.2. Let A = {a, ad, ad2, . . . , adn}, where a and d are positive integers

with a > 0 and d > 1. Then there exists an oriented graph with score set A except

for a = 1, d = 2, n > 0 and for a = 1, d = 3, n > 0.

Proof. We use induction on n. Let n = 0. As a > 0, a + 1 > 0. Let D be an
oriented graph on a + 1 vertices with no arcs (that is the complement of Ka+1).
Then each vertex of D has score a + 1 − 1 + 0 − 0 = a. Therefore the score set of
D is A = {a}, proving the result for n = 0.

If n = 1, then three cases arise. (i) a = 1, d > 3, (ii) a > 1, d = 2 and (iii)
a > 1, d > 2.

Case (i). a = 1, d > 3. Then a + 1 > 0 and ad − 2a − 1 = a(d − 2) − 1 =
d − 3 > 0. Construct an oriented graph D with vertex set V = X ∪ Y , where
X ∩ Y = ∅, |X | = a + 1, |Y | = ad − 2a − 1 and Y → X . Therefore D has
|V | = |X |+ |Y | = a+1+ad−2a−1 = ad−a vertices and the scores of the vertices
are

ax = |V | − 1 + 0− |Y | = ad− a− 1− (ad− 2a− 1) = a

for all x ∈ X and

ay = |V | − 1 + |X | − 0 = ad− a− 1 + a + 1 = ad

for all y ∈ Y .

Therefore the score set of D is A = {a, ad}.
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Case (ii). a > 1, d = 2. Firstly take a = 2, d = 2, so that ad = 4.
Consider an oriented graph D with vertex set V = {v1, v2, v3, v4} in which v1 → v3

and v2 → v4. Then D has ad = 4 vertices and the scores of the vertices are
av1

= av2
= 4− 1 + 1− 0 = 4 = ad and av3

= av4
= 4− 1 + 0− 1 = 2 = a.

Therefore the score set of D is A = {a, ad}.

Now take a > 2, d = 2. Then a > 0 and a − 2 > 0. Consider an oriented
graph D with vertex set V = X ∪ Y ∪Z, where X ∩ Y = ∅, Y ∩Z = ∅, Z ∩X = ∅,
|X | = 2, |Y | = a − 2, |Z| = a. Let X = {x1, x2}, Y = {y1, y2, . . . , ya−2} and
Z = {z1, z2, . . . , za}. Let yi → x1, yi → x2 for all i, where 1 ≤ i ≤ a− 2; z1 → x1;
z2 → x2; zi+2 → yi for all i, where 1 ≤ i ≤ a− 2.

Then D has |V | = |X |+ |Y |+ |Z| = 2 + a− 2 + a = 2a = ad vertices and the
score of the vertices are

ax1
= ax2

= |V | − 1 + 0− (|Y |+ 1) = ad− 1− (a− 2 + 1) = ad− a = 2a− a = a,

ayi
= |V | − 1 + 2− 1 = ad for all i, where 1 ≤ i ≤ a− 2

and
azi

= |V | − 1 + 1− 0 = ad for all i, where 1 ≤ i ≤ a.

Therefore the score set of D is A = {a, ad}.

Case (iii). a > 1, d > 2. Then a + 1 > 0 and ad− 2a− 1 = a(d− 2)− 1 > 0,
and the result follows from case (i).

Hence in all these cases we obtain an oriented graph D with score set A =
{a, ad}. This proves the result for n = 1.

Assume that the result is true for n = 0, 1, 2, 3, . . . , p for some integer p ≥ 1.
We show that the result is true for p + 1.

Let a and d be positive integers with a > 0 and d > 1 and for a = 1, d 6= 2, 3.
Therefore by the inductive hypothesis there exists an oriented graph D with score
set {a, ad, ad2, . . . , adp}. That is, a, ad, ad2, . . . , adp are the distinct score of the
vertices of D. Let V be the vertex set of D.

Once again we have either (i). a = 1, d > 3, (ii). a > 1, d = 2 or (iii). a > 1,
d > 2. Obviously for d > 1 in all the above cases we have adp+1 ≥ 2adp. Also
the score set of D, namely {a, ad, ad2, . . . , adp}, has at least two distinct scores for
p ≥ 1. Therefore by Lemma 2.1 we have |V | ≤ adp. Hence adp+1 ≥ 2|V | so that
adp+1 − 2|V |+ 1 > 0.

Consider now a new oriented graph D1 with vertex set V1 = V ∪ X , where
V ∩X = ∅, |X | = adp+1−2|V |+1 and arc set containing all the arcs of D together
with X → V . Then D1 has |V1| = |V |+|X | = |V |+adp+1−2|V |+1 = adp+1−|V |+1
vertices and a+ |X |−|X | = a, ad+ |X |−|X | = ad, ad2+ |X |−|X | = ad2, . . . , adp +
|X | − |X | = adp are the distinct scores of the vertices of V and

ax = |V1| − 1 + |V | − 0 = adp+1 − |V |+ 1− 1 + |V | = adp+1 for all x ∈ X.

Therefore the score set of D1 is A = {a, ad, ad2, . . . , adp, adp+1} which proves
the result for p + 1. Hence the result follows. �
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For any two integers m and n with m 6= 0 we denote by m/n to mean that
m divides n.

As noted in Theorem 2.2, there exists no oriented graph when either a = 1,
d = 2, n > 0 or a = 1, d = 3, n > 0, which is now proved in the next Theorem.

Theorem 2.3. There exists no oriented graph with score set A = {a, ad, ad2, . . . , adn},
n > 0, when either (i). a = 1, d = 2 or (ii). a = 1, d = 3.

Proof. Case(i). Assume A = {1, 2, 22, . . . , 2n} is a score set of some oriented graph
D for n > 0. Then there exist positive integers, say x1, x2, x3, . . . , xn+1 such that

A1 = [1, 1, . . . , 1
︸ ︷︷ ︸

x1

, 2, 2, . . . , 2
︸ ︷︷ ︸

x2

, 22, 22, . . . , 22

︸ ︷︷ ︸

x3

, . . . , 2n, 2n, . . . , 2n

︸ ︷︷ ︸

xn+1

]

is the score sequence of D. Therefore by Theorem 1.1 we have

x1 + 2x2 + 22x3 + · · ·+ 2nxn+1 =

(
n+1∑

i=1

xi

) ((
n+1∑

i=1

xi

)

− 1

)

which implies that x1 is even. However, x1 is a positive integer, therefore x1 ≥ 2.
Let a1 = 1, a2 = 1 and a3 ≥ 1. By equation(1.1) a1 +a2 +a3 ≥ 3(3−1), 2+a3 ≥ 6,
or a3 ≥ 4. This implies that x2 = 0, a contradiction.

Case(ii). Assume A = {1, 3, 32, . . . , 3n} is a score set of some oriented graph
D for n > 0. Then there exist positive integers, say y1, y2, y3, . . . , yn+1 such that

A2 = [1, 1, . . . , 1
︸ ︷︷ ︸

y1

, 3, 3, . . . , 3
︸ ︷︷ ︸

y2

, 32, 32, . . . , 32

︸ ︷︷ ︸

y3

, . . . , 3n, 3n, . . . , 3n

︸ ︷︷ ︸

yn+1

]

is the score sequence of D. Therefore by Theorem 1.1 we have

y1 + 3y2 + 32y3 + · · ·+ 3nyn+1 =

(
n+1∑

i=1

yi

) ((
n+1∑

i=1

yi

)

− 1

)

so that
y1 + 3y2 + 32y3 + · · ·+ 3nyn+1 = q(q − 1),

where q =
n+1∑

i=1

yi > 1 as n > 0 and y1, y2, y3, . . . , yn+1 are positive integers.

Firstly suppose y1 > 1 or y1 ≥ 2. Let a1 = 1, a2 = 1 and a3 ≥ 1. By equation
(1.1) a1 + a2 + a3 ≥ 3(3 − 1), 2 + a3 ≥ 6 or a3 ≥ 4. This implies that y2 = 0, a
contradiction.

Now suppose y1 = 1. Therefore 1+3y2+32y3+ · · ·+3nyn+1 = q(q−1), where
q > 1, that is, 3(y2 +3y3 + · · ·+3n−1yn+1) = q2− q−1. Since the expression in the
lefthand side is a multiple of 3, therefore 3/q2−q−1. For q = 2, we have 3/22−2−1,
or 3/1, which is absurd. Now suppose q > 2. Since every positive integer q > 2
is one of the forms 3r, 3r + 1, 3r + 2, where r > 0, therefore, 3/(3r)2 − 3r − 1, or
3/(3r + 1)2 − (3r + 1)− 1, or 3/(3r + 2)2 − (3r + 2)− 1, respectively, which gives
3/9r2 − 3r − 1, or 3/9r2 + 3r − 1, or 3/9r2 + 3r + 1, respectively.
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Since 3/9r2 − 3r, 3/9r2 + 3r and 3/9r2 + 9r, 3/− 1, or 3/1, which is absurd.
�

Theorem 2.4. If a1, a2, . . . , an are non-negative integers with a1 < a2 < · · · < an,
then there exists an oriented graph with an + 1 vertices and with score set A =
{a′

1, a
′

2, . . . , a
′

n}, where

a′

i =

{
ai−1 + ai + 1 for i > 1,
ai for i = 1.

Proof. We use induction on n. For n = 1 let D be an oriented graph on a1 + 1
vertices with no arcs (that is the complement of Ka1+1). Then each vertex of D
has score a1 + 1 − 1 + 0 − 0 = a1 = d1. Therefore the score set of D is A = {a′

1}.
This verifies the result for n = 1.

If n = 2, then there are two non-negative integers a1 and a2 with a1 < a2.
Clearly a1 + 1 > 0 and a2 − a1 > 0. Consider an oriented graph D with vertex set
V = X ∪ Y , where X ∩ Y = ∅, |X | = a1 + 1, |Y | = a2 − a1 and Y → X . Therefore
D has |V | = |X | + |Y | = a1 + 1 + a2 − a1 = a2 + 1 vertices, and the score of the
vertices are ax = |V | − 1 + 0− |Y | = a2 + 1− 1− (a2 − a1) = a1 = a′

1 for all x ∈ X
and ay = |V | − 1 + |X | − 0 = a2 + 1− 1 + a1 + 1 = a1 + a2 + 1 = a′

2 for all y ∈ Y .

Therefore the score set of D is A = {a′

1, a
′

2} which proves the result for n = 2.

Assume that the result is true for n = 1, 2, 3, · · · , p, for some integer p ≥ 2.
We show that the result is true for p + 1.

Let a1, a2, . . . , ap+1 be non-negative integers with a1 < a2 < · · · < ap+1.
Since a1 < a2 < · · · < ap, by the inductive hypothesis there exists an oriented
graph D on ap + 1 vertices with score set {a′

1, a
′

2, . . . , a
′

p} where

a′

i =

{
ai−1 + ai + 1 for i > 1,
ai for i = 1.

That is, score set of D is {a1, a1 + a2 + 1, a2 + a3 + 1, · · · , ap−1 + ap + 1}. So
a1, a1 + a2 + 1, a2 + a3 + 1, . . . , ap−1 + ap + 1 are the distinct scores of the vertices
of D. Let V be the vertex set of D so that |V | = ap + 1.

Since ap+1 > ap, ap+1 − ap > 0. Consider now a new oriented graph D1

with vertex set V1 = V ∪ X , where V ∩ X = ∅, |X | = ap+1 − ap, and arc set
containing all the arcs of D together with X → V . Then D1 has |V1| = |V |+ |X | =
ap+1+ap+1−ap = ap+1+1 vertices, a1+|X |−|X | = a1 = a′

1, a1+a2+1+|X |−|X | =
a1+a2+1 = a′

2, a2+a3+1+|X |−|X | = a2+a3+1 = a′

3, . . . , ap−1+ap+1+|X |−|X | =
ap−1 + ap + 1 = a′

p are the distinct scores of the vertices of V and

ax = |V1| − 1 + |V | − 0 = ap+1 + 1− 1 + ap + 1 = ap + ap+1 + 1 = a′

p+1

for all x ∈ X .

Therefore the score set of D1 is A = {a′

1, a
′

2, . . . , a
′

p, a
′

p+1} which proves the
result for p + 1. Hence by induction, the result follows. �
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From Theorem 2.4 it follows that every singleton set of non-negative integers
is a score set of some oriented graph.

As we have shown in Theorem 2.3 that the sets {1, 2, 22, . . . , 2n} and {1, 3, 32,
. . . , 3n} cannot be the score sets of an oriented graph, for n > 0. It therefore follows
that the above results cannot be generalized to say that any set of non-negative
integers forms the score set of some oriented graph. However, there can be other
special classes of non-negative integers which can form the score set of an oriented
graph, and the problem needs further investigation.
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