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A MARKOV -BINOMIAL DISTRIBUTION

E. Omey, J. Santos, S. Van Gulck

Let {Xi, i ≥ 1} denote a sequence of {0, 1}-variables and suppose that the
sequence forms a Markov Chain. In the paper we study the number of suc-
cesses Sn = X1 + X2 + · · · + Xn and we study the number of experiments
Y (r) up to the r-th success. In the i.i.d. case Sn has a binomial distribution
and Y (r) has a negative binomial distribution and the asymptotic behaviour
is well known. In the more general Markov chain case, we prove a central
limit theorem for Sn and provide conditions under which the distribution of
Sn can be approximated by a Poisson-type of distribution. We also com-
pletely characterize Y (r) and show that Y (r) can be interpreted as the sum
of r independent r.v. related to a geometric distribution.

1. INTRODUCTION

Many papers are devoted to sequences of Bernoulli trials and they form
the basis of many (known) distributions. Applications are numerous. To mention
only a few:

– the one-sample runs test can be used to test the hypothesis that the order
in a sample is random;

– the number of successes can be used for testing for trends in the weather
or in the stock market;

– Bernoulli trials are important in matching DNA-sequences;

– the number of (consecutive) failures can be used in quality control.

For further use we suppose that each Xi takes values in the set {0, 1} and

for n ≥ 1, let Sn =
n
∑

i=1

Xi denote the number of successes in the sequence (X1, X2,

. . . , Xn). If the Xi are i.i.d. with P (Xi = 1) = p and P (Xi = 0) = q = 1 − p, it
is well known that Sn has a binomial distribution Sn ∼ BIN(n, p). In the classical
theory one either calculates probabilities concerning Sn by using the binomial dis-
tribution or by using a normal- or a Poisson-approximation. A related variable
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of interest is Y (r) where for r ≥ 1 the variable Y (r) counts the number of exper-
iments until the r-th success. In the i.i.d. case it is well known that Y (r) has a
negative binomial distribution and that Y (r) can be interpreted as the sum of i.i.d.
geometrically distributed r.v.

In the section 2 below we first list the Markov chain properties that we need
and then study Sn (section 2.1) and Y (r) (section 2.2). We finish the paper with
some concluding remarks.

2. MARKOV CHAINS

Let the initial distribution be given by P (X1 = 1) = p and P (X1 = 0) =
q = 1 − p and for i, j = 0, 1, let pi,j = P (X2 = j | X1 = i) denote the transition
probabilities. To avoid trivialities we suppose that 0 < pi,j < 1. The one-step
transition matrix of the Markov chain is given by

P =

(

p0,0 p0,1

p1,0 p1,1

)

.

We list some elementary properties of this Markov chain, cf. [3, Chapter
XVI.3]. First note that the Markov chain has a unique stationary vector given
by (x, y) = (p1,0, p0,1)/(p0,1 + p1,0). The eigenvalues of P are λ1 = 1 and λ2 =
1− p0,1 − p1,0 = p0,0 + p1,1 − 1. Note that |λ2| < 1. By induction it is easy to show
that the n-step transition matrix is given by Pn = A + λn

2B where

A =

(

x y
x y

)

, B =

(

y −y
−x x

)

.

It follows that p
(n)
0,0 = x + λn

2 y and p
(n)
1,0 = x − λn

2 x. Using these relations for
n ≥ 1 we have

P (Xn = 1) = y + λn−1
2 (px − qy) = y − λn−1

2 (y − p),

P (Xn = 0) = x + λn−1
2 (y − p).

Information about moments is given in the following result.

Lemma 1. For n ≥ 1 we have

(i) E(Xn) = P (Xn = 1) = y − λn−1
2 (y − p).

(ii) Var(Xn) =
(

y − λn−1
2 (y − p)

)(

x + λn−1
2 (y − p)

)

.

(iii) For n ≥ m we have Cov(Xn, Xm) = λn−m
2 Var(Xm).

Proof. The first and the second part are easy to prove. To prove (iii), note

that E(XnXm) = P (Xn = 1, Xm = 1) = p
(n−m)
1,1 P (Xm = 1). It follows that

Cov(Xn, Xm) =
(

p
(n−m)
1,1 −P (Xn = 1)

)

P (Xm = 1). Using the expressions obtained
before we obtain

Cov(Xn, Xm) =
(

y + λn−m
2 x − y + λn−1

2 (y − p)
)

P (Xm = 1)

= λn−m
2

(

x + λm−1
2 (y − p)

)

P (Xm = 1),
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and the result follows. �

As a special case we consider the type of correlated Bernoulli trials studied
in [2] and [9]. In this model we assume that P (Xn = 1) = p, P (Xn = 0) = q = 1−p
and ρ = ρ(Xn, Xn+1) 6= 0 for all n ≥ 1. From this it follows that Cov(Xn, Xn+1) =
ρpq and that P (Xn = 1, Xn+1 = 1) = p(p + ρq). Since P (Xn = 1) = p we also find
that

P (Xn = 0, Xn+1 = 1) = P (Xn = 1, Xn+1 = 0) = pq(1 − ρ).

It turns out that P (Xn+1 = j | Xn = i) = pi,j (i, j = 0, 1), where the pi,j are given
by

P (p, ρ) =

(

q + ρp p(1 − ρ)
q(1 − ρ) p + ρq

)

.

In this case we have (x, y) = (q, p) and λ2 = ρ. For n ≥ m it follows from
Lemma 1 that ρ(Xn, Xm) = ρn−m.

2.1. THE NUMBER OF SUCCESSES Sn

2.1.1. Moments

In this section we study the number of successes Sn =
n
∑

i=1

Xi. In our first

result we study moments of Sn and extend the known i.i.d. results.

Proposition 2. (i) We have E(Sn) = ny − (y − p)(1 − λn
2 )/(1 − λ2).

(ii) We have

Var(Sn) = nxy(1 + λ2)/(1 − λ2) +
n−1
∑

k=0

(Aλk
2 + Bλ2k

2 + Ckλk
2),

where A, B, C will be determined in the proof of the result.

(iii) If P = P (p, ρ) we have E(Sn) = np and

Var(Sn) = pq
(

n(1 + ρ) − 2ρ(1 − ρn)/(1 − ρ)
)

/(1 − ρ).

Proof. Part (i) follows from Lemma 1(i). To prove (ii) we start from Var(Sk+1) =
V ar(Sk + Xk+1). Using Lemma 1, we see that

Var(Sk+1) − Var(Sk) = Var(Xk+1) + 2
k
∑

i=1

λk+1−i
2 Var(Xi).

Again from Lemma 1 we see that

Var(Xi) = xy + aλi−1
2 − bλ2i−2

2

where a = (y − p)(y − x) and b = (y − p)2. Straightforward calculations show that

Var(Sk+1) − Var(Sk) = xy(1 + λ2)/(1 − λ2) + Aλk
2 + Bλ2k

2 + Ckλk
2
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where C = 2a and

A =
(

a(1 − λ2) − 2xyλ2 − 2b
)

/(1 − λ2),

B = b(1 + λ2)/(1 − λ2).

If we define S0 = 0 this result holds for all k ≥ 0. Using Var(Sn) =
n−1
∑

k=0

(

Var(Sk+1)−

Var(Sk)
)

, result (ii) follows. Result (iii) is easier to prove. Using Lemma 1 we have

Var(Sk+1) − Var(Sk) = xy
(

1 + 2
k
∑

i=1

ρk+1−i
)

= xy(1 + ρ − 2ρk+1)/(1 − ρ).

The result follows by taking sums as before. �

The expression for the variance can be simplified asymptotically. We use the
notation u(n) ∼ cv(n) to indicate that u(n)/v(n) → c.

Corollary 3. As n → ∞ we have

(i) E(Sn) ∼ ny and Var(Sn) ∼ nxy(1 + λ2)/(1 − λ2).

(ii) E(Sn)−ny → (p− y)/(1−λ2) and Var(Sn)−nxy(1 + λ2)/(1−λ2) → c,
where

c =
A

1 − λ2
+

B

1 − λ2
2

+
Cλ2

(1 − λ2)2
.

2.1.2. Distribution of Sn

In this section we determine pn(k) = P (Sn = k). It is convenient to condition
on Xn and to this end we define

pi
n(k) = P (Sn = k, Xn = i), i = 0, 1.

Obviously pn(k) = p0
n(k) + p1

n(k). Note that p1
1(1) = p, p0

1(0) = q and that
p1
1(0) = p0

1(1) = 0. In the next result we show how to calculate pi
n(k) recursively.

Lemma 4. For n ≥ 1 we have

(i) p0
n+1(k) = p0,0p

0
n(k) + p1,0p

1
n(k);

(ii) p1
n+1(k) = p0,1p

0
n(k − 1) + p1,1p

1
n(k − 1).

Proof. We have p0
n+1(k) = I + II where

I = P (Sn+1 = k, Xn+1 = 0, Xn = 0),

II = P (Sn+1 = k, Xn+1 = 0, Xn = 1).

Clearly I = P (Sn = k, Xn+1 = 0, Xn = 0). Now note that

I = P (Xn+1 = 0 | Sn = k, Xn = 0)p0
n(k)

= P (Xn+1 = 0 | Sn−1 = k, Xn = 0)p0
n(k)

= p0,0p
0
n(k).
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In a similar way we find that II = p1,0p
1
n(k) and the first result follows. The

second result can be proved in a similar way. �

For small values of n we can use Lemma 4 to obtain the p.d. of Sn. It does
not seem to be easy to obtain an explicit expression for pn(k). For an alternative
approach we refer to the end of section 2.2 below.

2.1.3. Central limit theorem

For fixed P and (q, p) and large values of n we can approximate the p.d. of
Sn by a normal distribution. We prove the following central limit theorem.

Theorem 5. As n → ∞ we have

Sn − E(Sn)
√

Var (Sn)

d⇒ Z ∼ N(0, 1).

Proof. We prove the theorem using generating functions. For |z| ≤ 1 and i = 0, 1

let Ψi
n(z) =

n
∑

k=0

pi
n(k)zk and let Ψn(z) = Ψ0

n(z)+Ψ1
n(z). Furthermore, let Λn(z) =

(Ψ0
n(z), Ψ1

n(z)) and note that Λ1(z) = (q, pz). Using Lemma 4 we have

Ψ0
n+1(z) = p0,0Ψ

0
n(z) + p1,0Ψ

1
n(z),

Ψ1
n+1(z) = p0,1zΨ0

n(z) + p1,1zΨ1
n(z).

Switching to matrix notation, we find that Λn+1(z) = Λn(z)A(z), where

A(z) =

(

p0,0 p0,1z
p1,0 p1,1z

)

.

It follows that Λn+1(z) = Λ1(z)An(z). We can find An(z) by using the
eigenvalues of A(z) and to this end we use the characteristic equation

|A(z) − λI| = λ2 − λ(p0,0 + p1,1z) + (p0,0p1,1 − p1,0p0,1)z = 0.

Solving this equation gives

λ1(z) = (p0,0 + p1,1z +
√

D)/2,

λ2(z) = (p0,0 + p1,1z −
√

D)/2,

where D = (p0,0 − p1,1z)2 + 4p0,1p1,0z. Now define U = U(z) and W = W (z) by
the equations I = A0(z) = U + W and A(z) = λ1(z)U + λ2(z)W . We find that
U(z) = (A(z)−λ2(z)I)/

√
D and W (z) = −(A(z)−λ1(z)I)/

√
D. Using the theorem

of Cayley and Hamilton we obtain for n ≥ 0 that An(z) = λn
1 (z)U + λn

2 (z)W .
Note that as z → 1 we have λ1(z) → 1 and λ2(z) → 1 − p0,1 − p1,0 = θ, where
by assumption we have |θ| < 1. Since |λ2(z)/λ1(z)| → |θ| as z → 1, for all
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ε sufficiently small we can find δ = δ(ε) such that 0 < δ < 1 and such that
|λ2(z)/λ1(z)| ≤ |θ| + ε < 1, for all z such that 1 − δ ≤ z ≤ 1. We conclude
that for any sequence zn → 1, we have |λ2(zn)/λ1(zn)|n → 0. From this it follows
that An(zn)/λn

1 (zn) → U(1) where both rows of U(1) are equal to (x, y). Using
Ψn+1(z) = Λ1(z)An(z) (1, 1)

t
it follows that Ψn+1(zn)/λn

1 (zn) → 1.

Now we discuss the asymptotic behaviour of λ1(z) as z → 1. For convenience
we write λ(z) = λ1(z). Note that λ(z) satisfies λ(1) = 1 and the characteristic
equation

λ2(z) − λ(z)(p0,0 + p1,1z) + (p0,0p1,1 − p1,0p0,1)z = 0.

Taking derivatives with respect z we find that

2λ(z)λ′(z) − λ′(z)(p0,0 + p1,1z) − λ(z)p1,1 + p0,0p1,1 − p1,0p0,1 = 0

and
2λ(z)λ′′(z) + 2

(

λ′(z)
)2 − 2λ′(z)p1,1 − λ′′(z)(p0,0 + p1,1z) = 0.

Replacing z by z = 1 we find that

2λ(1)λ′(1) − λ′(1)(p0,0 + p1,1) − λ(1)p1,1 + p0,0p1,1 − p1,0p0,1 = 0,

2λ(1)λ′′(1) + 2
(

λ′(1)
)2 − 2λ′(1)p1,1 − λ′′(1)(p0,0 + p1,1) = 0.

Since λ(1) = 1, straightforward calculations show that

λ′(1) = p0,1/(p0,1 + p1,0) = y,

λ′′(1) = 2xy(p1,1 − p0,1)/(p0,1 + p1,0).

Using the first terms of a Taylor expansion, it follows that

λ(z) = 1 + y(z − 1) +
1

2
λ′′(1)(z − 1)2

(

1 + o(1)
)

.

Using twice the expansion log(x) = −(1 − x) − (1 − x)2
(

1 + o(1)
)

/2, we obtain

log(λ(z)) − y log(z)

(1 − z)2
→ 1

2

(

λ′′(1) + y − y2
)

.

It follows that

log
(

λ(z)z−y
)

(1 − z)2
→ xy

p1,1 − p0,1

p0,1 + p1,0
+ xy

1

2
=

1

2
β,

where, after simplifying,

β = xy
p1,1 + p0,0

p0,1 + p1,0
= xy

1 + λ2

1 − λ2
.

To complete the proof of Theorem 5 we replace z by zn = z1/
√

n. In this case
we find that

log
(

λ(zn)z−y
n

)

n
→ 1

2
β

(

log(z)
)2
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and then that
z−yn

n Ψn+1(zn) → exp
(

β
(

log(z)
)2

/2
)

.

It follows that (Sn+1 − ny)/
√

n
d⇒ W where W ∼ N(0, β). Using Corollary 3, the

proof of the theorem is finished. �

From Theorem 5 we obtain the following result.

Corollary 6. Let Z ∼ N(0, 1). As n → ∞ we have the following results :

(i) (Sn − ny)/
√

nβ
d⇒ Z, where β = xy(1 + λ2)/(1 − λ2);

(ii) If p0,1 = p1,1 = p, we have (Sn − pn)/
√

npq
d⇒ Z;

(iii) If P = P (p, ρ), we have (Sn − pn)/
√

nβ
d⇒ Z, where

β = pq(1 + ρ)/(1 − ρ).

2.1.4. Poisson approximation

In the i.i.d. case it is well known how we can approximate a binomial dis-
tribution by a suitable Poisson distribution. The same can be done in the more
general Markov setting.

In what follows and also in Section 2.2 we shall use the following notations.
We use U(a) to denote a Bernoulli r.v. with P (U(a) = 1) = a (0 < a < 1), V (a)
is a Poisson(a)-variable (a > 0) and G(a) is a geometric r.v. with P (G(a) = k) =
(1 − a)ak−1(k ≥ 1, 0 < a < 1). Note that

E(zU(a)) = (1 − a) + az,

E(zV (a)) = exp(−a + az),

E(zG(a)) = (1 − a)z/(1 − az).

A compound Poisson distribution with generator G(a) is defined as follows.
Let G0(a) = 0 and for i ≥ 1, let Gi(a) denote i.i.d. copies of G(a). Independent
of the Gi(a) let V (b) denote a Poisson(b)-variable. Now consider the new r.v.

B(V (b)) =
∑V (b)

i=0 Gi(a). Clearly we have

E(zB(V (b))) = exp
(

− b + bE(zG(a))
)

and we say that B
(

V (b)
)

has a compound Poisson distribution with generator
G(a).

In the next result, in the limiting distribution all r.v. involved are independent
and we use the notations introduced above. In each case we take limits as n → ∞.

Theorem 7. Suppose that np0,1 → a > 0 and p1,1 → c (0 ≤ c < 1).

(i) If c = 0, then Sn
d⇒ U(p) + V (a).
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(ii) If 0 < c < 1, then Sn
d⇒ U(p)G(c) + B

(

V (a)
)

.

Proof. Using the notations as in the proof of Theorem 5 we have Ψn+1(z) =
Λ1(z)An(z) (1, 1)

t
where Λ1(z) = (q, pz) and An(z) = λn

1 (z)U(z) + λn
2 (z)W (z).

Recall that U(z) = (A(z) − λ2(z)I)/
√

D and W (z) = −(A(z) − λ1(z)I)/
√

D and
that λ1(z) = (p0,0 + p1,1z +

√
D)/2 and λ2(z) = (p0,0 + p1,1z −

√
D)/2, where

D = (p0,0 − p1,1z)2 + 4p0,1p1,0z.

Some straightforward calculations show that

1 − λ1(z) = 2p0,1(1 − z)/
(

p0,1 + p1,0 + p1,1(1 − z) +
√

D
)

.

Since by assumption np0,1 → a we have p0,1 → 0 and p0,0 → 1. By assump-
tion we have p1,1 → c and hence also p1,0 → 1 − c. It follows that D → (1 − cz)2.
Using 1 − cz > 0 we readily see that n

(

1 − λ1(z)
)

→ a(1 − z)/(1 − cz). From this
it follows that

λn
1 (z) → θ(z) := exp

(

− a(1 − z)/(1 − cz)
)

.

Next we consider λn
2 (z). Clearly we have λ2(z) = λ2(1)z/λ1(z). Our assump-

tions imply that λ2(1) = p0,0 + p1,1 − 1 → 0. It follows that
(

λ2(1)z
)n → 0 and

hence also that λn
2 (z) → 0. Using λ2(z) → cz, we obtain that

U(z) → U∗ =

(

1 0
(1 − c)/(1 − cz) 0

)

and hence also that that An(z) → θ(z)U∗. It follows that

Ψn+1(z) → (q, pz)θ(z)U∗ (1, 1)
t
,

so that

Ψn+1(z) → L(z) = θ(z)
q + z(p − c)

1 − cz
.

It remains to identify the limit L(z).

If c = 0, we have L(z) = (q + pz) exp
(

− a(1− z)
)

. Now the interpretation is
clear. Using the notations introduced before, let U(p) and V (a) denote independent

r.v.. Clearly L(z) = E(zV (a)zU(p)). If c = 0, we conclude that Sn
d⇒ V (a) + U(p).

If 0 < c < 1, we find L(z) =
(

q + pK(z)
)

exp
(

− a(1 − K(z)
)

, where
K(z) = (1 − c)z/(1 − cz). Using the notations introduced before, we see that
K(z) = E(zG(c)). Let G0(c) = 0 and let Gi(c) denote independent copies of G(c)
and, independent of the other variables, let V (a) denote a Poisson-variable with

parameter a. The random sum B
(

V (a)
)

=
V (a)
∑

i=0

Gi(c) is well-defined and has gen-

erating function E(zB(V (a))) = exp
(

− a(1 − K(z)
)

. Finally, let U(p) denote a
Bernoulli variable, independent of all other variables. We conclude that L(z) =

E(zU(p)G(c)+B(V (a))) and as a consequence we find that Sn
d⇒ U(p)G(c)+B

(

V (a)
)

.
�
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Remark. If c = 1, then L(z) = q exp(−a) which is the generating function of a degenerate

variable.

As a special case we have the following corollary.

Corollary 8. (Wang [9]) Suppose that P = P (p, ρ).

(i) If np → u > 0 and ρ → 0, then Sn
d⇒ V (u).

(ii) If np → u > 0 and ρ → v (0 < v < 1), then Sn
d⇒ B(V

(

u(1 − v)
)

.

2.2. GENERALIZED NEGATIVE BINOMIAL DISTRIBUTION

In this section we invert Sn and for each r ≥ 1 we define Y (r) as the number
of experiments until the r-th success. Since Y (r) = min{n : Sn = r} we have
P (Sn ≤ r) = P (Y (r+1) ≥ n+1) and P (Y (r) = n) = P (Sn = r, Xn = 1). The last
quantity has been studied before. Adapting the notations, for n ≥ r and i = 0, 1
we set pi

n(r) = P (Sn = r, Xn = i) and pn(r) = P (Sn = r). The corresponding
generating functions will be denoted by Ψi

r(z) and Ψr(z). Using similar methods
as before, for n ≥ r we obtain that

p1
n(r) = p1,1p

1
n−1(r − 1) + p0,1p

0
n−1(r − 1),

p0
n(r) = p0,0p

0
n−1(r) + p1,0p

1
n−1(r).

Using generating functions, this leads to

Ψ1
r(z) = zp1,1Ψ

1
r−1(z) + zp0,1Ψ

0
r−1(z),

Ψ0
r(z) = zp0,0Ψ

0
r(z) + zp1,0Ψ

1
r(z).

We find that

Ψ0
r(z) =

zp1,0

1 − p0,0z
Ψ1

r(z),

Ψ1
r(z) = zk(z)Ψ1

r−1(z),

where k(z) = p1,1 + zp0,1p1,0/(1 − p0,0z). It follows that

(1) Ψ1
r(z) =

(

zk(z)
)r−1

Ψ1
1(z).

Using Ψr(z) = Ψ0
r(z) + Ψ1

r(z) we also find that

(2) Ψr(z) =

(

1 +
zp1,0

1 − p0,0z

)

Ψ1
r(z) = u(z)

(

zk(z)
)r−1

Ψ1
1(z),

where u(z) = 1 + zp1,0/(1 − p0,0z).

It remains to determine Ψ1
1(z) =

∞
∑

n=1
P (Sn = 1, Xn = 1)zn. Clearly we have

P (Sn = 1, Xn = 1) = p, if n = 1,

P (Sn = 1, Xn = 1) = qpn−2
0,0 p0,1, if n ≥ 2.
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It follows that

Ψ1
1(z) = z

(

p + q
p0,1z

1 − p0,0z

)

.

This result can be interpreted in the following way. We use the notations as
in the beginning of Section 2.1.4. Assuming that U(s) and G(t) are independent
r.v., we have E(zG(t)) = z(1 − t)/(1 − tz) and

(3) E(zU(s)G(t)) = (1 − s) + sz(1 − t)/(1 − tz).

Using these notations we can identify k(z) and Ψ1
1(z). Using (3) we obtain

that

k(z) = E(zU(p1,0)G(p0,0)),(4)

Ψ1
1(z) = zE(zU(q)G(p0,0)).(5)

Using (1), (4) and (5) we obtain the following result.

Theorem 9. (i) We have Y (1)
d
= 1 + U(q)G(p0,0).

(ii) For r ≥ 2, we have

Y (r)
d
=

r−1
∑

i=1

(

1 + Ui(p1,0)Gi(p0,0)
)

+ 1 + U(q)G(p0,0),

where all r.v. U(q), Ui(p1,0), G(p0,0) and Gi(p0,0) involved are independent.

Using Ψ1
r(z) = zk(z)Ψ1

r−1(z) it also follows for r ≥ 2 that

Y (r)
d
= Y (r − 1) + 1 + U(p1,0)G(p0,0)

and that
Y (r) − Y (r − 1)

d
= 1 + U(p1,0)G(p0,0)

where Y (r − 1), U(p1,0), and G(p0,0) are independent r.v.. Together with Y (1)
d
=

1+U(q)G(p0,0) we obtain the following probabilistic interpretation of the formulas.
At the start, the first value is either a succes or a failure. If we start with a failure
(which happens with probability q) we have to wait geometrically long until we
have a first succes. Given another succes position in the sequence, either the next
result is a succes or the next result is a failure (which happens with probability
p1,0) and then we have to wait geometrically long until we have a new success.
Although we start from a sequence of (Markov-)dependent variables, it turns out
that the times between consecutive successes are independent variables!

Now we take a closer look at pn(r) = P (Sn = r) and use (2). Note that
Ψr(1) = u(1) = 1/y and observe that

yu(z) = y +
yzp1,0

1 − p0,0z
= y +

xzp0,1

1 − p0,0z
= E(zU(x)G(p0,0))
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It follows that yΨr(z) = yu(z)
(

zk(z)
)r−1

Ψ1
1(z) and hence that

yP (Sn = r) = P
(

U(x)G(p0,0) + Y (r) = n
)

where U(x), G(p0,0) and Y (r) are independent. In the next result we formulate the
central limit theorem for Y (r) and a Poisson-type of approximation. The results
easily follow from the representation obtained in Theorem 9.

Corollary 10. (i) As r → ∞, we have

Y (r) − r/y
√

rp1,0p1,1/p2
0,1

d⇒ Z ∼ N(0, 1).

(ii) If rp1,0 → a and p0,0 → c, 0 ≤ c < 1, then Y (r) − r
d⇒ B

(

V (a)
)

.

Remark. For r ≥ 0, let M(r) = max{n : Sn ≤ r} and K(r) = max{n : Y (n) ≤ r}.

Clearly M(r) = n if and only if Y (r + 1) = n + 1 so that Y (r + 1) = M(r) + 1. Using

{M(r) ≥ n} = {Sn ≤ r} = {Y (r + 1) ≥ n + 1} and {K(r) ≥ n} = {Y (n) ≤ r}, it follows

that {K(n) ≤ r} = {Y (r + 1) ≥ n + 1}. As a consequence, we find that K(n)
d
= Sn. Now

note that K(r) corresponds to the renewal counting process associated with the sequence

A,A1, A2, ... where A
d
= 1+U(q)G(p0,0) and where the Ai are i.i.d. random variables with

Ai
d
= 1 + U(p1,0)G(p0,0). Standard (delayed) renewal theory could now be used to prove

the central limit theorem for Sn.

3. CONCLUDING REMARKS

1. Earlier we have observed that for n ≥ 1, P (Xn = 1) = y − λn−1
2 (y − p)

and P (Xn = 0) = x + λn−1
2 (y − p). From this it is easy to see that for n, m ≥ 1 we

have

P (Xn+m = 1) = y(1 − λn
2 ) + λn

2 P (Xm = 1),

P (Xn+m = 0) = x(1 − λn
2 ) + λn

2 P (Xm = 0).

Recall that (x, y) was the stationary vector. In what follows we assume that
λ2 > 0. Now let Bn ∼ U(λn

2 ) and B◦
∼ U(y) denote Bernoulli r.v.. The formulas

obtained above show that Xn+m
d
= (1 − Bn)B◦ + BnXn where Bn is independent

of B◦ and Xn. In particular it follows that {Xn} satisfies the stochastic difference

equation: Xn+1
d
= (1 − B1)B

◦ + B1Xn.

2. A correlated binomial distribution has been introduced and studied in [1],
[4], [6], [7]. Examples and applications can be found e.g. in quality control, cf. [5].
One of the models can be described as follows. Let X, X1, X2, . . . , Xn denote i.i.d.
Bernoulli variables with X ∼ U(p) and let U(α) and U(β) denote independent
Bernoulli variables, independent of the Xi. Now define Yi = U(α)Xi + (1 −
U(α))U(β) and the corresponding sum

Tn =
n
∑

i=1

Yi = U(α)Sn + n
(

1 − U(α)
)

U(β).
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The following interpretation can be given. In quality control we can decide to
check all produced units. The alternative is to check just one unit and then accept
or reject all produced units. In the first scenario Sn counts the number of defects
or successes. In the second scenario we conclude that we have either 0 or n defects
or successes. Clearly Sn ∼ BIN(p, n) and for Tn we have P (Tn = k) = αP (Sn =
k) + (1 − α)P (nU(β) = k). It follows that

P (Tn = k) = αP (Sn = k) for 1 ≤ k ≤ n − 1,

P (Tn = 0) = αP (Sn = 0) + (1 − α)(1 − β),

P (Tn = n) = αP (Sn = n) + (1 − α)β.

As to Yi we have Yi
d
= U(λ) where λ = αp + (1 − α)β. For the variance

V ar(Yi) = σ2 we find that

σ2 = α(1 − α)(p − β)2 + αp(1 − p) + (1 − α)β(1 − β).

For i 6= j we obtain that Cov(Yi, Yj) = α(1−α)(p−β)2 +(1−α)β(1−β). It follows
that ρ(Yi, Yj) = ρ = 1 − α if β = p. If β 6= p we find that ρ(Yi, Yj) = ρ = 1/(c + 1)
where

c = αp(1 − p)/
(

α(1 − α)(p − β)2 + (1 − α)β(1 − β)
)

.

We see that ρ(Yi, Yj) is the same for all i 6= j. Clearly this implies that
Var(Tn) = n

(

1 + (n − 1)ρ/2
)

σ2. In the next result we formulate two asymptotic
results.

Proposition 11. (i) As n → ∞,

(

Tn −
(

1 − U(α)
)

nU(β) − npU(α)
)

/
√

np(1 − p)
d⇒ B(α)Z,

where Z ∼ N(0, 1).

(ii) If np → a > 0 and β → 0, then Tn
d⇒ Y where Y

d
= U(α)V (a) and U(α)

and V (a) are independent.

3. From the physical point of view it seems reasonable to study random
vectors (X1, X2, . . . , Xn) with a joint probability distribution of the following form:
for xi = 0, 1 we have

P (Xi = xi, i = 1, 2, . . . , n) = C exp
(

α
n
∑

i=1

aixi + β
n
∑

i=1

n
∑

j=1

ai,jxixj

)

.

The second term represents the interaction between particles. If β = 0, the Xi are
independent and no interaction appears.

4. In our next paper [8] we study runs, singles and the waiting time until the
first run of r consecutive successes for Bernoulli-sequences that are generated by
a Markov chain.
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