IDENTITIES INVOLVING RATIONAL SUMS BY INVERSION AND PARTIAL FRACTION DECOMPOSITION

Helmut Prodinger

Abstract

Identities appearing recently in: J. L. Díaz-Barrero, J. Gibergans-BÁguena, P. G. Popescu: Some identities involving rational sums. Appl. Anal. Discrete Math., 1 (2007), 397-402, are treated by inverting them; the resulting sums are evaluated using partial fraction decomposition, following Wenchang Chu: A binomial coefficient identity associated with Beukers' conjecture on Apéry numbers. Electron. J. Combin., 11 (1): Note 15, 3 pp. (electronic), 2004. This approach produces a general formula, not only special cases.

1. INTRODUCTION

The following sums are evaluated in [2]:

$$
\begin{equation*}
\sum_{k=1}^{n}\binom{n}{k}(-1)^{k-1} \frac{1}{\binom{x+k}{k}} \sum_{1 \leq i \leq j \leq k} \frac{1}{x^{2}+(i+j) x+i j}=\frac{n}{(x+n)^{3}} \tag{1}
\end{equation*}
$$

$$
\begin{equation*}
\sum_{k=1}^{n}\binom{n}{k}(-1)^{k-1} \text { complicated }(k)=\frac{n}{(x+n)^{4}} . \tag{2}
\end{equation*}
$$

Here, we present an alternative approach to such identities, which will produce a general formula. It is based on two principles: inverse pairs and partial fraction decomposition.

Other approaches might also work, but I have chosen the one that I find useful and appealing. Of course, it is not limited to the sums treated in this paper.

[^0]
2. INVERSE PAIRS

The following inverse relation is well-known:

$$
b_{n}=\sum_{k=0}^{n}\binom{n}{k}(-1)^{k-1} a_{k} \longleftrightarrow a_{n}=\sum_{k=0}^{n}\binom{n}{k}(-1)^{k-1} b_{k} .
$$

The proof is easy, for example, using exponential generating functions.
So, if we want a "nice" answer, like $b_{n}=\frac{n}{(x+n)^{2}}$, we must compute

$$
a_{n}=\sum_{k=0}^{n}\binom{n}{k}(-1)^{k-1} b_{k}
$$

to find the "complicated" term.
A technical comment: we will treat $x=0$ as a limiting case, otherwise we would have trouble with b_{0}, and we would have to artificially define it as 0 .

The computation of

$$
a_{n}=\sum_{k=0}^{n}\binom{n}{k}(-1)^{k-1} \frac{k}{(x+k)^{2}}
$$

and similar sums will be treated in the next section.

3. PARTIAL FRACTION DECOMPOSITION

The following approach is based on [1]. Consider (for $n \geq 1$)

$$
T:=\frac{n!}{z(z-1) \cdots(z-n)} \frac{z}{(x+z)^{2}}
$$

and perform partial fraction decomposition:

$$
T=\sum_{k=1}^{n}\binom{n}{k}(-1)^{n-k} \frac{k}{(x+k)^{2}} \frac{1}{z-k}+\frac{\lambda}{(x+z)^{2}}+\frac{\mu}{x+z} .
$$

Now we multiply this relation by z and let $z \rightarrow \infty$ to find

$$
0=\sum_{k=1}^{n}\binom{n}{k}(-1)^{n-k} \frac{k}{(x+k)^{2}}+\mu .
$$

This evaluates the sum:

$$
\sum_{k=1}^{n}\binom{n}{k}(-1)^{k-1} \frac{k}{(x+k)^{2}}=(-1)^{n} \mu
$$

Now

$$
\begin{aligned}
(-1)^{n} \mu & =(-1)^{n}\left[(x+z)^{-1}\right] \frac{n!}{z(z-1) \cdots(z-n)} \frac{z}{(x+z)^{2}} \\
& =(-1)^{n}\left[(x+z)^{1}\right] \frac{n!}{(z-1) \cdots(z-n)} \\
& =\left[z^{1}\right] \frac{n!}{(1+x-z) \cdots(n+x-z)} \\
& =\frac{n!}{(1+x) \cdots(n+x)} \sum_{k=1}^{n} \frac{1}{k+x} .
\end{aligned}
$$

This produces the identity

$$
\sum_{k=1}^{n}\binom{n}{k}(-1)^{k-1} \frac{1}{\binom{k+x}{x}} \sum_{j=1}^{k} \frac{1}{j+x}=\frac{n}{(x+n)^{2}}
$$

This instance was a warm-up for the general instance $b_{n}=\frac{n}{(x+n)^{d+1}}$, which is not much more complicated.

Analogous computations lead to

$$
\sum_{k=1}^{n}\binom{n}{k}(-1)^{k-1} \frac{k}{(x+k)^{d+1}}=(-1)^{n} \mu
$$

with

$$
\begin{aligned}
(-1)^{n} \mu & =(-1)^{n}\left[(x+z)^{-1}\right] \frac{n!}{z(z-1) \cdots(z-n)} \frac{z}{(x+z)^{d+1}} \\
& =(-1)^{n}\left[(x+z)^{d}\right] \frac{n!}{(z-1) \cdots(z-n)}=\left[z^{d}\right] \frac{n!}{(1+x-z) \cdots(n+x-z)} \\
& =\frac{n!}{(1+x) \cdots(n+x)}\left[z^{d}\right] \frac{1}{\left(1-\frac{z}{1+x}\right) \cdots\left(1-\frac{z}{n+x}\right)} \\
& =\frac{1}{\binom{x+n}{n}}\left[z^{d}\right] \exp \left(\log \frac{1}{1-\frac{z}{1+x}}+\cdots+\log \frac{1}{1-\frac{z}{n+x}}\right) \\
& =\frac{1}{\binom{x+n}{n}}\left[z^{d}\right] \exp \left(\sum_{k=1}^{n} \sum_{j \geq 1} \frac{z^{j}}{j(k+x)^{j}}\right)=\frac{1}{(x+n}\left[z^{d}\right] \exp \left(\sum_{j \geq 1}^{n} \frac{s_{n, j} z^{j}}{j}\right) \\
& =\frac{1}{\binom{x+n}{n}}\left[z^{d}\right] \prod_{j \geq 1} \sum_{\ell \geq 0} \frac{s_{n, j}^{\ell} z^{j \ell}}{\ell!j^{\ell}},
\end{aligned}
$$

where

$$
\begin{equation*}
s_{n, j}=\sum_{k=1}^{n} \frac{1}{(k+x)^{j}} . \tag{3}
\end{equation*}
$$

Consequently

$$
(-1)^{n} \mu=\frac{1}{\binom{x+n}{n}} \sum_{\ell_{1}+2 \ell_{2}+3 \ell_{3}+\cdots=d} \frac{s_{n, 1}^{\ell_{1}} s_{n, 2}^{\ell_{2}} \cdots}{\ell_{1}!\ell_{2}!\cdots 1^{\ell_{1}} 2^{\ell_{2}} \cdots} .
$$

Therefore, the following result holds.

Theorem 1.

$$
\sum_{k=1}^{n}\binom{n}{k}(-1)^{k-1} \frac{k}{(x+k)^{d+1}}=\frac{1}{\binom{x+n}{n}} \sum_{\ell_{1}+2 \ell_{2}+3 \ell_{3}+\cdots=d} \frac{s_{n, 1}^{\ell_{1}} s_{n, 2}^{\ell_{2}} \cdots}{\ell_{1}!\ell_{2}!\cdots 1^{\ell_{1}} 2^{\ell_{2}} \cdots}
$$

where $s_{n, j}$ is given by (3).
For $d=2$, we recover the inverse form of (1)

$$
\frac{s_{n, 1}^{2}+s_{n, 2}}{2}=\sum_{1 \leq i \leq j \leq n} \frac{1}{x^{2}+(i+j) x+i j},
$$

as one can easily check. The other instance $d=3$, given in [2] evaluates here handily as $s_{n, 1}^{3} / 6+s_{n, 1} s_{n, 2} / 2+s_{n, 3} / 3$.

REFERENCES

1. Wenchang Chu: A binomial coefficient identity associated with Beukers' conjecture on Apéry numbers. Electron. J. Combin., 11 (1): Note 15, 3 pp. (electronic), 2004.
2. J. L. Díaz-Barrero, J. Gibergans-Báguena, P. G. Popescu: Some identities involving rational sums. Appl. Anal. Discrete Math., 1, (2007), 397-402.

Department of Mathematics,

[^0]: 2000 Mathematics Subject Classification. 05A19, 05A10.
 Keywords and Phrases. Identity, inverse pairs, partial fractions decomposition.

