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IDENTITIES INVOLVING RATIONAL SUMS

BY INVERSION AND PARTIAL FRACTION

DECOMPOSITION

Helmut Prodinger

Identities appearing recently in: J. L. Dı́az-Barrero, J. Gibergans-Bágu-
ena, P. G. Popescu: Some identities involving rational sums. Appl. Anal.
Discrete Math., 1 (2007), 397–402, are treated by inverting them; the re-
sulting sums are evaluated using partial fraction decomposition, following
Wenchang Chu: A binomial coefficient identity associated with Beukers’

conjecture on Apéry numbers. Electron. J. Combin., 11 (1): Note 15, 3 pp.
(electronic), 2004. This approach produces a general formula, not only special
cases.

1. INTRODUCTION

The following sums are evaluated in [2]:

n
∑

k=1

(

n
k

)

(−1)k−1 1
(

x + k
k

)

∑

1≤i≤j≤k

1

x2 + (i + j)x + ij
=

n

(x + n)3
,(1)

n
∑

k=1

(n
k

)

(−1)k−1complicated(k) =
n

(x + n)4
.(2)

Here, we present an alternative approach to such identities, which will pro-
duce a general formula. It is based on two principles: inverse pairs and partial

fraction decomposition.

Other approaches might also work, but I have chosen the one that I find
useful and appealing. Of course, it is not limited to the sums treated in this paper.
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2. INVERSE PAIRS

The following inverse relation is well-known:

bn =

n
∑

k=0

(n
k

)

(−1)k−1ak ←→ an =

n
∑

k=0

(n
k

)

(−1)k−1bk.

The proof is easy, for example, using exponential generating functions.

So, if we want a “nice” answer, like bn =
n

(x + n)2
, we must compute

an =

n
∑

k=0

(

n
k

)

(−1)k−1bk

to find the “complicated” term.

A technical comment: we will treat x = 0 as a limiting case, otherwise we
would have trouble with b0, and we would have to artificially define it as 0.

The computation of

an =
n

∑

k=0

(

n
k

)

(−1)k−1 k

(x + k)2

and similar sums will be treated in the next section.

3. PARTIAL FRACTION DECOMPOSITION

The following approach is based on [1]. Consider (for n ≥ 1)

T :=
n!

z(z − 1) · · · (z − n)

z

(x + z)2

and perform partial fraction decomposition:

T =

n
∑

k=1

(

n
k

)

(−1)n−k k

(x + k)2
1

z − k
+

λ

(x + z)2
+

µ

x + z
.

Now we multiply this relation by z and let z →∞ to find

0 =
n

∑

k=1

(

n
k

)

(−1)n−k k

(x + k)2
+ µ.

This evaluates the sum:

n
∑

k=1

(n
k

)

(−1)k−1 k

(x + k)2
= (−1)nµ.
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Now

(−1)nµ = (−1)n [(x + z)−1]
n!

z(z − 1) · · · (z − n)

z

(x + z)2

= (−1)n [(x + z)1]
n!

(z − 1) · · · (z − n)

= [z1]
n!

(1 + x− z) · · · (n + x− z)

=
n!

(1 + x) · · · (n + x)

n
∑

k=1

1

k + x
.

This produces the identity

n
∑

k=1

(n
k

)

(−1)k−1 1
(

k + x
x

)

k
∑

j=1

1

j + x
=

n

(x + n)2
.

This instance was a warm-up for the general instance bn =
n

(x + n)d+1
, which is not

much more complicated.

Analogous computations lead to

n
∑

k=1

(n
k

)

(−1)k−1 k

(x + k)d+1
= (−1)nµ

with

(−1)nµ = (−1)n [(x + z)−1]
n!

z(z − 1) · · · (z − n)

z

(x + z)d+1

= (−1)n [(x + z)d]
n!

(z − 1) · · · (z − n)
= [zd]

n!

(1 + x− z) · · · (n + x− z)

=
n!

(1 + x) · · · (n + x)
[zd]

1
(

1−
z

1 + x

)

· · ·

(

1−
z

n + x

)

=
1

(x + n
n

)

[zd] exp

(

log
1

1−
z

1 + x

+ · · ·+ log
1

1−
z

n + x

)

=
1

(

x + n
n

)

[zd] exp

( n
∑

k=1

∑

j≥1

zj

j(k + x)j

)

=
1

(

x + n
n

)

[zd] exp

(

∑

j≥1

sn,jz
j

j

)

=
1

(

x + n
n

)

[zd]
∏

j≥1

∑

`≥0

s`
n,jz

j`

`!j`
,
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where

(3) sn,j =

n
∑

k=1

1

(k + x)j
.

Consequently

(−1)nµ =
1

(

x + n
n

)

∑

`1+2`2+3`3+···=d

s`1
n,1s

`2
n,2 · · ·

`1!`2! · · · 1`12`2 . . .
.

Therefore, the following result holds.

Theorem 1.

n
∑

k=1

(n
k

)

(−1)k−1 k

(x + k)d+1
=

1
(

x + n
n

)

∑

`1+2`2+3`3+···=d

s`1
n,1s

`2
n,2 . . .

`1!`2! · · · 1`12`2 · · ·

where sn,j is given by (3).

For d = 2, we recover the inverse form of (1)

s2
n,1 + sn,2

2
=

∑

1≤i≤j≤n

1

x2 + (i + j)x + ij
,

as one can easily check. The other instance d = 3, given in [2] evaluates here
handily as s3

n,1/6 + sn,1sn,2/2 + sn,3/3.
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