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LEVEL GENERATING TREES

AND PROPER RIORDAN ARRAYS

D. Baccherini, D. Merlini, R. Sprugnoli

We introduce a generalization of generating trees named Level Generating

Trees and study the connection between these structures and proper Rior-

dan arrays, deriving a theorem that, under suitable conditions, associates a

Riordan array to a Level Generating Tree and vice versa. We illustrate our

main results by several examples concerning classical combinatorial struc-

tures.

1. INTRODUCTION

The concept of generating trees has been introduced in the literature by
Chung, Graham, Hoggat and Kleiman in [4] to examine Baxter permuta-
tions. This technique has been successfully applied by West [17, 18] to other
classes of permutations and more recently to some other combinatorial classes such
as plane trees and lattice paths (see Barcucci et al. [2]). In all these cases, a
generating tree is associated to a certain combinatorial class, according to some
enumerative parameter, in such a way that the number of nodes appearing on level
n of the tree gives the number of n-sized objects in the class.

If a problem has been defined by means of a generating tree, some device has
to be used to obtain counting information on the objects of the associated combi-
natorial class. In [11] and [9], Merlini, Sprugnoli and Verri have introduced
the concept of matrix associated to a generating tree (AGT matrix, for short): this
is an infinite matrix (dn,k)n,k∈N where dn,k is the number of nodes at level n with
label k+c, c being the root label. The main result in [9] is Theorem 3.3 (3.1 in this
paper) which states the conditions under which an AGT matrix is a proper Rior-
dan array, and vice versa. For example, the following labeled tree (this example
concerns only non-marked nodes)
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corresponds to the generating tree, up to level 3, defined by the specification:

(1.1)

{
root : (2)
rule : (k) → (2) . . . (k)(k + 1).

This is known as the Catalan generating tree: in fact, the corresponding AGT
matrix, shown in Table 1, is strictly related to the generating function of Catalan
numbers, C(t) = (1−

√
1 − 4t)/(2t). The generic element Cn,k in the array is given

by:

Cn,k = [tn−k]C(t)k+1,

that is, (Cn,k) is the Riordan array (C(t), tC(t)).

n/k 0 1 2 3 4 5 6
0 1
1 1 1
2 2 2 1
3 5 5 3 1
4 14 14 9 4 1
5 42 42 28 14 5 1
6 132 132 90 48 20 6 1

Table 1. The Catalan triangle.

The concept of a Riordan array provides a remarkable characterization of
many lower triangular arrays that arise in combinatorics and algorithm analysis.
The theory of Riordan arrays has been introduced in 1991 by Shapiro, Getu,
Woan and Woodson [15], with the aim of generalizing the concept of a renewal

array defined by Rogers [12] in 1978. Their basic idea was to define a group of
infinite lower triangular arrays with properties analogous to those of the Pascal
triangle. This concept has also been studied by Sprugnoli [16], who pointed out
the relevance of these matrices from a theoretical and practical point of view. A
Riordan array is a pair (d(t), h(t)) in which d(t) and h(t) are formal power series;
if d(0) 6= 0 and h(0) = 0, h′(0) 6= 0, the Riordan array is called proper. The pair
defines an infinite, lower triangular array (dn,k)n,k∈N where dn,k = [tn]d(t)h(t)k.

In the recent literature, Riordan arrays have attracted the attention of vari-
ous authors and many examples and applications can be found [1, 6, 8, 10, 11, 14,
19, 20, 21]. Most of them deal with the original formulation of Riordan arrays,
that is, in the corresponding matrices each element dn+1,k+1 is given by a linear
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combination of the elements in the previous row, starting from the previous column
(see Theorem 2.1). The coefficients of this linear combination are independent of n
and k, and therefore they constitute a specific sequence (a0, a1, a2, . . .), called the
A-sequence of the Riordan array. For example, in the Catalan triangle we have
A = (1, 1, 1, . . .), in fact Cn+1,k+1 =

∑

j≥k

Cn,j , as can be easily verified from Table 1.

However, several new characterizations of Riordan arrays have been given in [7]:
the main result in that paper shows that a lower triangular array (dn,k) is Rior-
dan whenever its generic element dn+1,k+1 linearly depends on the elements (dr,s)
lying in a well-defined, but large zone of the array; the corresponding coefficients
constitute the so-called A-matrix (see Theorem 2.3 and Figure 2 in the present
paper). There is no difference between Riordan arrays defined in either way: the
A-sequence is a particular case of A-matrix and, given a Riordan array defined by
an A-matrix, this corresponds to a well defined A-sequences. This fact provides a
remarkable characterization of many lower triangular arrays for which a recurrence
can be given involving elements belonging to the relevant zone.

There are some examples in which a Riordan array can be easily studied by
means of the A-matrix while the A-sequence is very complex. From a combinatorial
point of view, this means that it is very challenging to find a construction allowing
to obtain objects of size n + 1 from objects of size n. Instead, the existence of
a simple A-matrix corresponds to a possible construction from objects of different
sizes less than n+1. For example, in Section 4 a combinatorial problem is described
by an A-matrix, containing simple coefficients (i.e. integer values). In fact, we take
into consideration the Riordan array defined by:

R(t, w) =
1 − t

1 − t(1 + w) − t2(1 − w)
,

which corresponds to a rather complicated A-sequence:

A(t) =
1 + t +

√

(1 + t)2 + 4t(t − 1)

2

= 1 + t2 + t3 − 2t5 − 3t6 + t7 + 11t8 + 15t9 + O(t10).

This corresponds to the recurrence:

dn+1,k+1 = dn,k + dn,k+2 + dn,k+3 − 2dn,k+5 − 3dn,k+6 + dn,k+7 + 11dn,k+8 + · · · ,
whereas, the associated A-matrix can be represented as follows:

j

n 1

1

1

-1

and corresponds to the simple recurrence:

dn+1,k+1 = dn,k + dn,k+1 − dn−1,k + dn−1,k+1.
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In order to treat these cases, we propose a new type of generating tree corresponding
to the concept of A-matrix. In this structure, called Level Generating Tree (LGT
for short), a node can generate children, grandchildren, great grandchildren, . . .
nodes (next levels) and brother nodes (same level). Our main result is a theorem
which states the conditions under which a matrix associated to a LGT is a proper
Riordan array, and vice versa. The aim of this paper is to introduce the concept

0

1

21 10

3 2 12 01

level 0

level 1

level 2

level 3

Figure 1. A LGT example.

of level generating trees corresponding to Riordan arrays whose generic element
dn,k depends in a “simple way” from the elements of several previous rows. This
generalizes the usual concept of generating trees corresponding to dependencies
from the previous row only. We wish to describe some examples, in which the
problem can be easily studied by means of the A-matrix. In these examples the A-
sequence is very complex, so that approaching the problem with just this sequence
seems almost impossible.

The structure of the paper is as follows. In Section 2 we summarize the main
results concerning Riordan arrays. In Section 3 we describe the concept of Level
Generating Trees and prove Theorem 3.2. In the remaining Sections, we study some
significant examples with the new LGT concept: the Bloom’s strings, some lattice
path problems and binary words excluding a pattern.

2. RIORDAN ARRAYS

A Riordan array is a pair (d(t), h(t)) in which d(t) and h(t) are formal power
series; if d(0) 6= 0, h(0) = 0 and h′(0) 6= 0, the Riordan array is called proper.
The pair defines an infinite, lower triangular array (dn,k)n,k∈N where:

dn,k = [tn]d(t)h(t)k .

From this definition, it easily follows that d(t)h(t)k is the generating function of
column k in the array. Therefore,

D(t, w) =
d(t)

1 − wh(t)
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is the bivariate generating function of the triangle. The Riordan array theory
allows us to find properties concerning these matrices; for example, we have:

(2.1)

n∑

k=0

dn,kfk = [tn]d(t)f(h(t)),

for every sequence fk having f(t) as its generating function. A description of the
Riordan array theory, together with many examples, can be found in Shapiro et
al. [15] or in Sprugnoli [16]. Rogers [12] observed the following, fundamental
characterization of proper Riordan arrays:

Theorem 2.1. An array (dn,k)n,k∈N is a proper Riordan array if and only if there

exists a sequence A = (ai)i∈N with a0 6= 0 such that every element dn+1,k+1 (not

lying in column 0 or row 0) can be expressed as a linear combination with coefficients

in A of the elements in the preceding row, starting from the preceding column, i.e.:

(2.2) dn+1,k+1 = a0dn,k + a1dn,k+1 + a2dn,k+2 + · · · .

The sum in (2.2) is actually finite because dn,k = 0, ∀k > n. Sequence A,
called the A-sequence of the Riordan array, is characteristic in the sense that
it determines (and is determined by) the function h(t). If A(t) is the generating
function of the A-sequence, it can be proven (see Sprugnoli [16]) that h(t) is the
solution of the functional equation:

(2.3) h(t) = tA(h(t)).

The A-sequence does not completely characterize a proper Riordan array
(d(t), h(t)) because the function d(t) is independent of A(t). In [7] the following
new characterizations have been proved:

Theorem 2.2. Let (dn,k)n,k∈N be any infinite lower triangular array with dn,n 6=
0, ∀n ∈ N (in particular, let it be a proper Riordan array (d(t), h(t)); then a unique

sequence Z = (z0, z1, z2, . . .) exists (called the Z-sequence of the array) such that

every element in column 0 can be expressed as a linear combination of all the

elements in the preceding row, i.e.:

dn+1,0 = z0dn,0 + z1dn,1 + z2dn,2 + · · · .

Let Z(t) be the generating function of the Z-sequence; then :

(2.4) d(t) =
d0,0

1 − tZ(h(t))
.

The relation can be inverted and this gives us a formula for the Z-sequence:

(2.5) Z(y) =

[
d(t) − d0,0

td(t)

∣
∣
∣
∣

y = h(t)

]

.

The following theorems show that we can characterize a Riordan array by means
of an A-matrix, rather than by a simple A-sequence. For a possible generalization
the reader can refer to the paper [7].
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Theorem 2.3. A lower triangular array (dn,k)n,k∈N is Riordan if and only if there

exist another array (αi,j)i,j∈N, with α0,0 6= 0, and a sequence (ρj)j∈N such that :

(2.6) dn+1,k+1 =
∑

i≥0

∑

j≥0

αi,jdn−i,k+j +
∑

j≥0

ρjdn+1,k+j+2.

In Figure 2, we try to give a graphic representation of the zones from which
the generic element dn+1,k+1 (denoted by a small disk or bullet) is allowed to
depend, so that the array is Riordan. The only restrictions are that α0,0 6= 0. In
[7] a further characterization has been proved.

α0,0 α0,1 α0,2 · · ·
α1,0 α1,1

...
...

· · ·

ρ0 ρ1 · · ·

Figure 2. The zones which dn+1,k+1 can depend on.

As previously noted, the A-sequence and the function h(t) of a Riordan
array are strictly related to each other. This fact allows us to think that h(t) can
be deduced from the A-matrix (αi,j)i,j∈N and the sequence (ρj)j∈N. So, after hav-
ing found the function h(t), we can also find the A-sequence by determining its
generating function A(t). Almost always, dn+1,k+1 only depends on the elements
of a finite number of rows above it; therefore, instead of treating a global gener-
ating function for the A-matrix, let us examine a sequence of generating functions
P [0](t), P [1](t), P [2](t), . . . corresponding to the rows 0, 1, 2, . . . of the A-matrix, i.e.:

P [0](t) = α0,0 + α0,1t + α0,2t
2 + α0,3t

3 + . . .

P [1](t) = α1,0 + α1,1t + α1,2t
2 + α1,3t

3 + . . .

and so on. Moreover, let Q(t) be the generating function for the sequence (ρj)j∈N.
Thus we have:

Theorem 2.4. If (dn,k)n,k∈N is a Riordan array whose generic element dn+1,k+1 is

defined by formula (2.6) through the A-matrix (αi,j)i,j∈N and the sequence (ρj)j∈N,
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then the functions h(t) and A(t) for (dn,k) are given by the following implicit ex-

pressions :

(2.7)
h(t)

t
=

∑

i≥0

tiP [i](h(t)) +
h(t)2

t
Q(h(t)),

(2.8) A(t) =
∑

i≥0

tiA(t)−iP [i](t) + tA(t)Q(t).

The generic element dn+1,k+1 often only depends on the two previous rows
and sometimes on the elements of its own row. In this case, the functional equation
(2.8) reduces to a second degree equation in A(t) and, as a result, we give an explicit
expression for the generating function of the A-sequence.

Theorem 2.5. Let (dn,k)n,k∈N be a Riordan array whose generic element dn+1,k+1

only depends on the two previous rows and, possibly, on its own row. If P [0](t),
P [1](t) and Q(t) are the generating functions for the coefficients of this dependence,
then we have :

(2.9) A(t) =
P [0](t) +

√

P [0](t)2 + 4tP [1](t)(1 − tQ(t))

2(1 − tQ(t))
.

As mentioned above, h(t) is related to A(t) and d(t) is related to Z(t). Since
the Z-sequence exists for every lower triangular array, every recurrence defining
dn+1,0 in terms of the other elements in the array can be accepted as a good
definition of column 0. Therefore, in analogy to (2.6), we have the following linear
relation:

(2.10) dn+1,0 =
∑

i≥0

∑

j≥0

ζi,jdn−i,j +
∑

j≥0

σjdn+1,j+2.

In general, there is no connection between the ζi,j ’s and the αi,j ’s or between the

ζ0,0 ζ0,1 · · ·
ζ1,0

...
· · ·

σ0 σ1 · · ·

Figure 3. The zones which dn+1,0 can depend on.
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ρj ’s and the σj ’s and so we take the following generating functions into account:

R[0](t) = ζ0,0 + ζ0,1t + ζ0,2t
2 + ζ0,3t

3 + · · ·
R[1](t) = ζ1,0 + ζ1,1t + ζ1,2t

2 + ζ1,3t
3 + · · ·

and so on, and S(t) =
∑

j≥0 σjt
j . When the coefficients defining dn+1,k+1 and

dn+1,0 are the same, in the sense that:

ζi,j = αi,j+1 and σj = ρj ∀i, ∀j,

we say that column 0 is unprivileged and obtain the following formulas for our
generating functions:

R[i](t) =
P [i](t) − αi,0

t
and S(t) = Q(t)

for every i for which R[i](t), P [i](t), S(t) and Q(t) are well-defined.

At any rate, we can easily prove the following:

Theorem 2.6. If (dn,k)n,k∈N is a Riordan array whose elements in column 0 are

defined by relation (2.10), then the function d(t) is given by the following formula :

(2.11) d(t) =
d0,0

1 − ∑

i≥0

ti+1R[i](h(t)) − h(t)S(h(t))
.

When column 0 is unprivileged, Theorem 2.6 reduces to d(t) =
(d0,0h(t))/

∑

i≥0

αi,0t
i+1 , therefore, when d0,0 = α0,0 and αi,0 = 0, ∀i > 0, we obtain

the Bell subgroup whose elements are called renewal arrays (see, e.g., [14]).

It is clear that, in general, only proper Riordan arrays with integer coeffi-
cients can have a direct combinatorial interpretation. So, we restrict our attention

to formal power series f(t) =
∞∑

k=0

fktk having f0 = 1 and fk ∈ Z, for every k ∈ N.

These formal power series are called monic, integer formal power series. Conse-
quently, we define monic, integer proper Riordan arrays as proper Riordan arrays
whose elements are in Z and those on the main diagonal are 1. These arrays are
the main object of our investigations.

3. LEVEL GENERATING TREES

In [9] Merlini, Sprugnoli and Verri extended the correspondence between
generating trees and proper Riordan arrays to the whole group of monic integer
proper Riordan arrays. The generating trees have been extended to deal with
marked labels: a label is any positive integer, generated according to the generating
tree specification; a marked label is any positive integer, marked by a bar, for which
appropriate rules are given in the specification:

Definition 3.1. A marked generating tree is a rooted labeled tree (the labels can

be marked or non-marked) with the property that if v1 and v2 are any two nodes

with the same label then, for each label l, v1 and v2 have exactly the same number

of children with label l. To specify a generating tree it therefore suffices to specify :



Level generating trees and proper Riordan arrays 77

1. the label of the root ;
2. a set of rules explaining how to derive from the label of a parent the labels

of all of its children.

A simple example is given by the following generating tree specification:

(3.1)







root : (2)

rule : (k) → (k)(k + 1)

(k) → (k)(k + 1)

The first 4 levels of the corresponding generating tree are shown in Figure 4.

2

2

2

2 3

3

3 4

3

3

3 4

4

4 5

Figure 4. The generating tree for rule (3.1).

The idea is that marked labels kill or annihilate the non-marked labels with
the same number, i.e. the count relative to an integer j is the difference between the
number of non-marked and marked labels j at a given level. This gives a negative
count if marked labels are more numerous than non-marked ones.

Definition 3.2. An infinite matrix (dn,k)n,k∈N is said to be associated to a marked

generating tree with root (c) (AGT matrix for short) if dn,k is the difference between

the number of nodes at level n with label k + c and the number of nodes with label

k + c. By convention, the level of the root is 0.

The triangle in Table 2 corresponds to the AGT matrix associated to the
specification (3.1). We observe that the row sums of an AGT matrix can be simply

n/k 0 1 2 3 4
0 1
1 −1 1
2 1 −2 1
3 −1 3 −3 1
4 1 −4 6 −4 1

Table 2. The AGT matrix associated to (3.1)

evaluated by formula (2.1) with fk = 1 and f(t) =
1

1 − t
. Before stating the main

result obtained by Merlini et al. in [9], we introduce the following notations for
generating tree specifications.
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(x) = (x)
(x)p = (x) · · · (x)

︸ ︷︷ ︸

p times

, p ≥ 0

(x)p = (x) · · · (x)
︸ ︷︷ ︸

−p times

, p < 0

(x)p = (x)p, p > 0

(x)p = (x)−p, p < 0
∏i

j=0(k − j)αj = (k)α0(k − 1)α1 · · · (k − i)αi

We note that (x)0 is the empty sequence and finally state the following the-
orem which relates monic integer proper Riordan arrays to marked generating
trees:

Theorem 3.1. Let c ∈ N, aj , bk ∈ Z, ∀j ≥ 0 and k ≥ c, a0 = 1, and let

(3.2)







root : (c)

rule : (k) → (c)bk

k+1−c∏

j=0

(k + 1 − j)aj

(k) → (c)bk

k+1−c∏

j=0

(k + 1 − j)aj

be a marked generating tree specification. Then, the AGT matrix associated to (3.2)
is a monic integer proper Riordan array defined by the triple (d0, A, Z), such that

d0 = 1, A = (a0, a1, a2, . . .), Z = (bc + a1, bc+1 + a2, bc+2 + a3, . . .).

Vice versa, if D is a monic integer proper Riordan array defined by the triple

(1, A, Z) with aj , zj ∈ Z, ∀j ≥ 0 and a0 = 1, then D is the AGT matrix associated

to the generating tree specification (3.2) with bc+j = zj − aj+1, ∀j ≥ 0.

This can be generalized as follows:

Definition 3.3. A Level Generating Tree (LGT) is a rooted labelled tree (the
labels can be marked or non-marked) with the property that, if v1 and v2 are any

two nodes at level i and j respectively with the same label then, for each label l and

level n, v1 and v2 have exactly the same number of children at level i + n and j + n
respectively, with label l. To specify a LGT it therefore suffices to specify :

1. the label of the root ;
2. a set of rules explaining how to derive from the label of a parent the labels

of all its children (different level) and brothers (same level).

Definition 3.4. An infinite matrix (dn,k)n,k∈N is said to be “associated” to a LGT

with root (c) (ALGT matrix for short) if dn,k is the difference between the number

of nodes at level n with label k + c and the number of nodes at level n with label

k + c. By convention, the level of the root is 0.
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Theorem 3.2. Let c ∈ N, αi,j ∈ Z, α0,0 6= 0, ρi ∈ Z, ζi,j ∈ Z, σi ∈ Z, ∀i, j ≥ 0
and k ≥ c, and let

(3.3)







root : (c)

rule : (k)i → (c)
ζj,k

i+j+1

k−c∏

h=0

(k + 1 − h)
αj,h

i+j+1

(k)i → (c)
ζj,k

i+j+1

k−c∏

h=0

(k + 1 − h)
αj,h

i+j+1

· · ·

(k)i → (c)
ζ0,k

i+1

k−c∏

h=0

(k + 1 − h)
α0,h

i+1

(k)i → (c)
ζ0,k

i+1

k−c∏

h=0

(k + 1 − h)
α0,h

i+1

(k)i → (c)
σk−1

i

k−c−1∏

h=1

(k − h)
ρh−1

i

(k)i → (c)
σk−1

i

k−c−1∏

h=1

(k − h)
ρh−1

i

be a level generating tree specification. Then, the ALGT matrix associated to (3.3)
is a proper Riordan array D defined by the A-matrix (αi,j)i,j∈N, Z-matrix (ζi,j)i,j∈N

and the sets of sequences (ρi)i∈N and (σi)i∈N with d0,0 = 1.

Proof. Let us consider the ALGT matrix (dn,k)n,k∈N associated to (3.3). Then,
dn,k counts the number of nodes at level n with label k + c. We have obviously
d0,0 = 1. Moreover, we observe that the maximum label value at each level increases
by one with respect to the previous level, hence dn,j = 0 for j > n. Now, (3.3) tells
us that:

• a node at level n + 1 with label k + 1 + c can be determined, in αj,h

different ways, from the nodes at the level n− j with label z + c, such that
z + c + 1 − h = k + c + 1, i.e., z = k + h, h ≥ 0;

• a node at level n+1 with label k +1+ c can be determined, in ρh different
ways, from the nodes at the same level n + 1 with label z + c, such that
z + c − h = k + c + 1, i.e., z = k + h + 1, h ≥ 1.

Hence:

dn+1,k+1 = ρ0dn+1,k+2 + ρ1dn+1,k+3 + · · · +
α0,0dn,k + α0,1dn,k+1 + · · · · · · +

· · · · · · · · · · · · · · · · · · · · · · · · · · · · · · +
· · · · · · · · · · · · · · · · · · · · · · · · · · · · · · +
αj,0dn−j,k + αj,1dn−j,k+1 + · · · .
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In a similar way, a node at level n + 1 with label c can be obtained from the nodes
at the same level and from the nodes at previous levels. Therefore we have:

dn+1,0 = σ0dn+1,1 + σ1dn+1,2 + · · · · +

ζ0,0dn,0 + ζ0,1dn,1 + · · · · · · · +
· · · · · · · · · · · · · · · · · · · · · · · · · · · +
· · · · · · · · · · · · · · · · · · · · · · · · · · · +
ζj,0dn−j,0 + ζj,1dn−j,1 + · · · .

�

We call proper Level Generating Trees the level generating trees corresponding
to Theorem 3.2.

Example 3.1. The connection between the language of words avoiding a given pattern
and Riordan arrays is of interest to us because the resulting matrices are better defined
by means of an A-matrix rather than by an A-sequence. In [1] we have studied binary
words excluding a pattern p = p0 . . . ph−1 ∈ {0, 1}h with respect to the number of zeroes
and ones.

Let us consider the pattern p = 11100 and let us apply the method described in
[1] to obtain the Riordan array Rn,j counting the number of words of length 2n− j and
with n bits equal to 1:

n\j 0 1 2 3 4 5 6 . . .

0 1 0 0 0 0 0 0 . . .

1 2 1 0 0 0 0 0 . . .

2 6 3 1 0 0 0 0 . . .

3 18 9 4 1 0 0 0 . . .

4 58 29 13 5 1 0 0 . . .

5 192 96 44 18 6 1 0 . . .

6 650 325 151 64 24 7 1 . . .
...

...
...

...
...

...
...

...
. . .

In this case the basic recurrence for the Riordan array is:

(3.4) Rn+1,j+1 = Rn,j + Rn+1,j+2 − Rn−2,j .

This shows that the combinatorial problem is described by an A-matrix, containing simple
coefficients. In principle, this should be equivalent to some combinatorial proof relating
the elements of row n + 1, to elements in the same or in the previous rows. If we look for
the A-sequence corresponding to our simple A-matrix, we find that

A(t) = 1 + t + 2t3 − t4 + 7t5 − 12t6 + 38t7 − 99t8 + . . .

and this excludes that there might exist a “simple” dependence of the elements in row
n + 1 from the elements in row n. In order to use the LGT we need the Z-matrix, that is:

(3.5) Rn+1,0 = 2Rn+1,1
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Finally, from recurrences (3.4) and (3.5) we define the following rule:

(3.6)







root : (0)
rule : (1)i → (0)2i

(k)i → (k − 1)i, k > 1
(k)i → (k + 1)i+1

(k)i → (k + 1)i+3

Figure 5 shows the LGT for this problem together with the A-matrix and Z-matrix.

4. BLOOM’S STRINGS

Bloom [3] studies the number of singles in all the 2n n-length bit strings,
where a single is any isolated 1 or 0, i.e., any run of length 1. Let Rn,k be the
number of n-length bit strings beginning with 0 and having k singles. We want
to examine a generic n-length bit string βn = b0b1 · · · bn−1 with b0 = 0 having k
singles:

• n = 0, k = 0: we have the empty string having no singles (R0,0 = 1);
• n = 1, k = 0: there are no bit strings with no single (R1,0 = 0);
• n > 1, k = 0: the bit b1 must be equal to 0 because the bit b0 is not a

single. We have two cases:
1. b1 = 0 is a single in b1 · · · bn−1: the single b1 is deleted by b0, and

the bit string b2 · · · bn−1 has 0 singles. Therefore, we have Rn−2,0

configurations;
2. b1 = 0 is not a single in b1 · · · bn−1: the bit string b1 · · · bn−1 has 0

singles, and these are Rn−1,0 configurations.
• n > 0, k > 0: we examine the following cases

1. b1 = 1. In this case we can say that b1 · · · bn−1 has only k−1 singles.
Using the complementary strings, we have Rn−1,k−1 configurations.

2. b1 = 0. In this case we can say that b1 · · · bn−1 has k singles. More-
over, we have two possibilities:

– b1 is a single in b1 · · · bn−1;
– b1 is not a single in b1 · · · bn−1.

Therefore, we use Rn−1,k in order to count the number of (n − 1)-
length bit strings beginning with 0 and having k singles and eliminate
the cases in which the bit b0 is a single with Rn−2,k−1. Finally, we use
Rn−2,k to consider the number of (n−2)-length bit strings beginning
with 0 and having k singles.

In this way, we have the following relations:

R0,0 = 1

R1,0 = 0

Rn+2,0 = Rn+1,0 + Rn,0(4.1)

Rn+1,k+1 = Rn,k + Rn,k+1 − Rn−1,k + Rn−1,k+1.(4.2)
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Using Theorem 2.3, the resulting matrix R = (Rn,k) is a Riordan array
where each element differs from the corresponding element in Bloom’s array by a
factor of 2, apart from n = 0 and k = 0 (see Table 3). To find the d(t) function

n/k 0 1 2 3 4 5 6 7
0 1
1 0 1
2 1 0 1
3 1 2 0 1
4 2 2 3 0 1
5 3 5 3 4 0 1
6 5 8 9 4 5 0 1
7 8 15 15 14 5 6 0 1

Table 3. The number of n length bit strings beginning with 0,
having k singles.

(the generating function of column 0 in the matrix R), we note from (4.1) that this
is the generating function of the Fibonacci numbers with initial conditions d0 = 1
and d1 = 0. In this way, we obtain:

(4.3) d(t) =
1 − t

1 − t − t2
.

We can apply Theorem 2.4 to find h(t) and the A-sequence as follows. In
this case, using (4.2) we have an A-matrix (αi,j)i,j∈N which can be represented as
follows:

j

n 1

1

1

-1

This translates into the generating functions

P [1](t) = −1 + t, P [0](t) = 1 + t.

By replacing P [0](t) and P [1](t) in formula (2.7) we obtain the generating
function for h(t):

h(t)

t
= P [0] (h(t)) + tP [1] (h(t)) ,

thus finding:

(4.4) h(t) =
t − t2

1 − t − t2
.
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By using generating functions, we can compute the number of singles in all
the 2n−1 n-length bit strings beginning with 0:

(4.5) R(t, w) =
d(t)

1 − wh(t)
=

1 − t

1 − t(1 + w) − t2(1 − w)
;

the coefficient [tnwk]R(t, w) gives the number of n-length bit strings beginning with
0 and having k singles. The same function obviously counts the n-length bit strings
beginning with 1 and having k singles.

For the A-sequence we use formula (2.9) and obtain

A(t) =
1 + t +

√

(1 + t)2 + 4t(−1 + t)

2
=

1 + t +
√

1 − 2t + 5t2

2
(4.6)

= 1 + t2 + t3 − 2t5 − 3t6 + t7 + 11t8 + 15t9 + O(t10).

In this case we have found a quite complex A-sequence (an infinite sequence with
increasing values, in modulus, and alternating signs) in contrast to a very simple
A-matrix (see P [0](t) and P [1](t) before) and therefore the original concept of a
generating tree cannot be naturally associated to this example. However, the new
concept of LGT is appropriate for this case: the root has label 0 and produces a
node with label 1 at level 1 and two nodes with labels 0, 1 at level 2. In general, a
node with label k at level i produces two nodes with labels k, k + 1 at level i + 1
and two nodes with labels k, k + 1 at level i + 2. The specification rule becomes:

(4.7)







root : (0)

rule : (0)0 → (1)1

(0)0 → (0)2(1)2

(k)i → (k)i+1(k + 1)i+1 i > 0

(k)i → (k)i+2(k + 1)i+2

To this tree structure, we can easily associate a matrix in which every element
counts the difference between non marked and marked nodes with the same label
at a certain level: in this way we obtain exactly the matrix in Table 3. The next
step, consists in using the level generating tree in order to generate the Bloom
strings up to a certain length. We propose the following algorithm, where bi and bi

represent a bit and its complement and the symbol  is used to associate a node
to the corresponding Bloom’s string:
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∀i, let bi a bit and bi its complementary.

(0)0  ε

(1)1  0

(0)2  00

(1)2  00

For all nodes (k)i:

if (k)i  b0 · · · bi−1 then

(k)i+1  b0 · · · bi−1bi−1

(k + 1)i+1  b0 · · · bi−1bi−1

(k)i+2  b0 · · · bi−1bi−1bi−1

(k + 1)i+2  b0 · · · bi−1bi−1bi−1

This algorithm associates to every node k at level i a Bloom’s string of length
i with k singles, as illustrated in Figure 6. We observe from Figure 6 that some

0 ε

0 1

01 00 00 002 1 1 0

010
011 011 011 001

0003 2 12 01

0101 0100 0100 0100 0110 0111 0010 0011 0011 0011 0000 0001

4 3 2 3 2 1 2 1 0 1 0 1

Figure 6. Generating Bloom’s string with the LGT (4.7)

strings are generated several times: for example, string 0100 at level 4 corresponds
to the nodes with label 2, 3 and 3. However, the string having the right association
with its node (i.e. the string having a number of singles equal to the value of the
label) is the one corresponding to label 2. The other two strings must be deleted
during the process of generation. In general, every marked node (k)i deletes a node
(k)i having the same label and the same bit string (which has only k − 1 singles),
as follows:
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βi−1bi−1 = βi

k-1

βibi−1

k-1

βibi−1

k

βibi−1bi−1

k

βibi−1bi−1

k+1 k

βibi−1bi−1

k-1

βibi−1bi−1

k

βibi−1bi−1

k-1

i

i+1

i+2

In fact, the algorithm assigns to (k)i+1 the bit string βibi−1, where bi−1 is a single
by construction. On the other side, the node (k)i+1 generates the node (k)i+2 with
associated bit string βibi−1bi−1. This bit string has k − 1 singles, and therefore its
corresponding node (k)i+2 must be deleted by (k)i+2 Finally, if we consider a node
(0)i+1, the associated bit string βibi−1 corresponds to a sequence of 0. In this case,
the child node (0)i+2 has a legal associated bit string.

5. LATTICE PATH PROBLEMS

In this section we use a model of lattice paths studied in [8]. A lattice path of
m steps is a finite sequence (s1, · · · , sm) of ordered pairs si = ((xi−1, yi−1), (xi, yi)),
with 1 ≤ i ≤ m, of lattice points such that:

1. x0 = y0 = 0;
2. for 1 ≤ i ≤ m, xi = xi−1 + δi, yi = yi−1 + δ′i;
3. the pairs (δi, δ

′
i), 1 ≤ i ≤ m, are drawn from a set of permissible step

templates; and
4. these permissible step templates obey some conditions on their occurrence.

We consider the paths starting at the origin (0, 0) and ending at (xm, ym).

We are going to examine some lattice path problems having templates in the
class T = {(δ, δ′)|δ, δ′ ∈ N, δ + δ′ > 0} ∪ {( δ, δ′)|δ < 0, δ′ > 0}. We denote a step

template (δ, δ′) having δ ≥ 0 by eδnδ′

, where e stands for east and n for north; a
template is steep if δ ≤ δ′ and is shallow if δ > δ′ + 1; if δ = δ′ + 1 the template
will be called almost steep. A step template (δ, δ′) having δ < 0 will be denoted

by w|δ|nδ′

, where w stands for west. Figure 7 (a) illustrates the possible steps in
Z

2. By following the notation used in [7], we call steep those steps with δ ≤ δ′ (the
clear grey zone in Figure 7), almost steep those steps with δ = δ′ (the dark grey
zone in Figure 7), and shallow the ones with δ > δ′ + 1 (the white zone in Figure
7). The paths we want to describe are characterized by the pair (RA, R∆) where:

• RA is a set of steps of the kind nδ′

eδ with δ, δ′ ≥ 0 or δ < 0, δ′ > 0: this
set is used for steps not ending on the main diagonal;
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• R∆ is a set of steep steps and is used for steps which do end on the main
diagonal.

Let RS be the subset of RA made up of steep steps only: if RS 6= R∆ we say that
the paths have privileged access to the main diagonal.

We now denote by dn,k the number of paths corresponding to a given pair
(RA, R∆) and arriving to the point (n, n − k)1 of the lattice. In [7] the following
result is proved:

Theorem 5.1. Let (RA, R∆) be a lattice path problem and let (dn,k)n,k∈N be its

corresponding counting array. Then (dn,k)n,k∈N is a Riordan array if and only if

RA is composed of both steep steps and at least one almost steep step and a number s
exists such that for each step nδ′

w|δ| with δ < 0 we have δ′ < s. Besides, (dn,k)n,k∈N

is proper if RA contains the almost steep step e.

(a)

e e

nene

e

e3e

n
3 4

2 4

432

2n n2

n n

n2e 2e2n

3 2

nw

2
w2

n
3 2
w n

3
n 3 n e

3
n e e4n

3

n w
2

n

n w

n2

2 e n e

e3

n2

n

n

n

nn e

e

e

e

e e3

2 2 2

4 332

n e n

n n n

3 4

2 3 4

w n2w

nw
2

nw
2 2

nw3
(b)

e

n

e2

333

nee

n

n ne e2 23 4

w en

e

e

Figure 7. Possible steps originating from a given point in Z
2 and

their positions in the corresponding triangular array: e = east,
n = north, w = west.

Figure 7 (b) illustrates, in terms of steps type, the dependence of the generic
element dn+1,k+1 from the other elements in the array. Since R∆ is only made up
of steep steps, the recurrence for dn+1,0 does not depend on any elements in the
white or dark-grey zone.

For example, the paths without privileged access to the main diagonal and
RA = {e, n, ne2} correspond to the Riordan array:

(5.1) dn+1,k+1 = dn,k + dn−1,k + dn+1,k+2

as shown by the results in [7]. In fact, in this case we have P [0](t) = P [1](t) =
Q[1](t) = 1; therefore, h(t) is given by the solution of h(t) = t + t2 + h(t)2; that is:

(5.2) h(t) =
1 −

√
1 − 4t − 4t2

2
.

1We point out that we use the same symbol n for a north step and the abscissa of the arriving

point of a path. The context allows to avoid any misunderstanding.
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n/k 0 1 2 3 4 5 6
0 1
1 1 1
2 3 3 1
3 9 9 5 1
4 31 31 19 7 1
5 113 113 73 33 9 1
6 431 431 287 143 51 11 1

k

n

1

1

1

Table 4. The lower triangular array resulting from (5.1).

We should compute d(t) by means of formula (2.11) in Theorem 2.6:

(5.3) d(t) =
1

1 − h(t)
=

1 −
√

1 − 4t − 4t2

2t(1 + t)
.

Finally, for the A-sequence we use the formula (2.9) and obtain

A(t) =
1 +

√

1 + 4t(1 − t)

2(1 − t)
= 1 + 2t + 4t3 − 8t4 + 32t5 − 112t6 + 432t7 · · ·

In this case, from recurrence (5.1) we define the following rule:

(5.4)







root : (0)
rule : (k)i → (k + 1)i+2

(k)i → (k + 1)i+1

(k)i → (k − 1)i

Using Figure 7 (b) and (3.3), we propose the following algorithm for generating
lattice paths according to our model:

(0)0  ε
For all nodes (k)i:

if (k)i  Path then
(k + j)i  Path · nj

(k + j)i+h  Path · ehnh−1+|j−1|

This algorithm associates to every LGT’s node a path of the lattice. In particular,
to every node (k)n we associate a path which arrives to the point (n, n− k) of the
lattice. For example, Figure 8 illustrates the paths corresponding to rule (5.4).

A referee observed that another lattice path problem for which the A-matrix
is more convenient than the A-sequence is related to large Schröder numbers. In
our model this problem corresponds to steps RA = {e, n2e, n2e2} and no privileged
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0

0 1

1001210

Figure 8. Generating lattice paths with the LGT corresponding
to rule (5.4)

access to the main diagonal, that is, to the Riordan array:

(5.5) dn+1,k+1 = dn,k + dn−1,k+1 + dn,k+2.

In terms of generating functions we have:

d(t) =
1 − t2 −

√
1 − 6t2 + t4

2t2
, h(t) =

d(t)

t

and, for what concerns the A-sequence:

A(t) =
1 + t2 +

√
1 + 6t2 + t4

2
= 1 + 2t2 − 2t4 + 6t6 − 22t8 + 90t10 − 394t12 + · · · .

n/k 0 1 2 3 4 5 6
0 1
1 0 1
2 2 0 1
3 0 4 0 1
4 6 0 6 0 1
5 0 16 0 8 0 1
6 22 0 30 0 10 0 1

k

n

1

11

Table 5. The lower triangular array resulting from (5.5).

Using (5.5) we can define the following rule, which is illustrated in Figure 9:

(5.6)







root : (0)
rule : (k)i → (k)i+2

(k)i → (k + 1)i+1

(k)i → (k − 1)i+1
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0

1

2 0 0

3 1 1 1 1

Figure 9. Generating lattice paths with the LGT corresponding
to rule (5.6).

CONCLUSIONS

Our main result, which we tried to illustrated by several examples, allows us
to associate the new concept of level generating trees to a class of Riordan arrays,
better defined in terms of an A-matrix, rather than by their A-sequence. While the
original concept of generating tree could only be used when combinatorial objects of
size n+1 (say Ωn+1) were defined by means of objects of size n, the new definition
allows us to define Ωn+1 by objects in Ωn, Ωn−1 and so on. Our examples show
that this is a natural need for approaching many combinatorial problems (see also
Ferrari et al. [5]), and therefore we consider this paper as a step towards a
more general method to deal in a systematic way with enumeration problems in
combinatorics.

REFERENCES

1. D. Baccherini, D. Merlini, R. Sprugnoli: Binary words excluding a pattern and

proper Riordan Arrays. Discrete Mathematics, 307 (2007), 1021–1037.

2. E. Barcucci, A. Del Lungo, E. Pergola, R. Pinzani: Eco: A methodology for the

enumeration of combinatorial objects. J. Differ. Equations Appl., 5 (1999), 435–490.

3. D. M. Bloom: Singles in a Sequence of Coin Tosses. The College Mathematics

Journal, 1998.

4. F. R. K. Chung, R. L. Graham, V.E. Hoggat, M. Kleiman: The number of Baxter

permutations. Journal of Combinatorial Theory, Series A, 24 (1978), 382–394.

5. L. Ferrari, E. Pergola, R. Pinzani, S. Rinaldi: Jumping succession rules and

their generating functions. Discrete Mathematics, 271 (2003), 29–50.



Level generating trees and proper Riordan arrays 91

6. D. Merlini: Proper generating trees and their internal path length. Discrete Applied

Mathematics, 2007, doi: 10.1016/j.dam.2007.08.051

7. D. Merlini, D. G. Rogers, R. Sprugnoli, M. C. Verri: On some alternative

characterizations of Riordan arrays. Canadian Journal of Mathematics, 49 (2) (1997),

301–320.

8. D. Merlini, D. G. Rogers, R. Sprugnoli, M. C. Verri: Underdiagonal lattice

paths with unrestricted steps. Discrete Applied Mathematics, 91 (1999), 197–213.

9. D. Merlini, R. Sprugnoli, M. C. Verri: An algebra for proper generating trees.

In Algorithms, trees, combinatorics and probabilities, Trends in Mathematics, Mathe-

matics and Computer Science, Birkhäuser, pages 127–139, 2000.
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