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BIJECTIONS BETWEEN CERTAIN FAMILIES OF

LABELLED AND UNLABELLED d-ARY TREES

Alois Panholzer, Helmut Prodinger

We present enumeration results for d-ary trees whose vertices are coloured by
k colours in a specific way. Besides generating functions proofs of these results
we also give direct bijections between these coloured trees and uncoloured d-
ary trees.

1. INTRODUCTION AND RESULTS

We are dealing here with d-ary trees, which are amongst the most fundamen-
tal tree structures with applications, e.g., in combinatorics, computer science and
biology, see, e.g., [1,3–5,9].

A d-ary tree is either an empty tree or it consists of a root node, to which an
ordered sequence of exactly d subtrees is attached that are itself d-ary trees. We
denote the family of d-ary trees by Td and the empty tree by ε. In particular in
the computer science related literature one sometimes uses instead of the symbol ε
the notion of external nodes with a certain symbol distinguishable from the proper
nodes, called internal nodes. Each node v in the tree has then exactly d children
attached to v and we may speak of the first child, . . . , the d-th child, where we
have to allow “empty children” ε. This recursive description can also be expressed
via the following formal equation for Td, where ∪̇ denotes the disjoint union of two
combinatorial families:

(1) Td = ε ∪̇ 1
2

d

Td Td · · · Td
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It is well known and can be shown in many ways that the number T
(d)
n of

d-ary trees of size n, where the size |T | of a tree T is here always measured by its
number of nodes, is given by the generalized Catalan numbers:

(2) T (d)
n =

1
(d− 1)n + 1

(dn
n

)
, for n ≥ 0.

For the special instance d = 2, i.e., binary trees where each node has a left
and a right child, several studies of certain subclasses of two-coloured binary trees
appeared. In two-coloured binary trees the nodes in the tree are coloured either
black or white. In [2, 6, 7] remarkable enumeration formulæ and relations between
subclasses of two-coloured trees, where restrictions on the colours of two connected
nodes are made, and other combinatorial objects are obtained. In particular in [2, 7]
it has been shown in a bijective way that the number of -free two-coloured binary
trees with a black root and of size n ≥ 1 are equal to the number of (uncoloured)
ternary trees of size n. Here a two-coloured binary tree is called -free, when
there is no edge occurring in the tree that connects a parent coloured black with a
right child coloured white. The bijection presented in [7] gives a procedure, which
is easy to implement and that allows to encode (and decode) a ternary tree by a

-free two-coloured binary tree with a black root of the same size.
This motivated us to have a closer look on relations between certain subclasses

of coloured trees and uncoloured trees, leading to generalizations in two directions:
first we deal now with arbitrary d-ary trees, for d ≥ 2, and second we consider
k-coloured trees (or k-labelled trees), i.e., there is a set of k colours (or labels),
k ≥ 2, and each node in a tree has a colour (label) from this set.

Although we could deal directly with k-coloured d-ary trees, we will present
our generalizations in two steps, which should improve the readability: first we
consider two-coloured d-ary trees, and only then we consider the general case of
k-labelled d-ary trees.

So, first we deal with two-coloured d-ary trees, where the nodes in a tree are
coloured either black or white. We introduce here the notion of -free two-coloured
d-ary trees (by generalizing the definition for binary trees), whose meaning is now,
that there is no edge occurring in the tree that connects a parent coloured black
with a d-th child (i.e., the rightmost child) coloured white. The family of -free
two-coloured d-ary trees with a black root is denoted here by Bd. An example of a
tree in B3 is given in Figure 1.

We state now our enumeration result for trees in Bd of a given size, which
relates black-rooted -free two-coloured d-ary trees with ordinary (2d − 1)-ary
trees.

Theorem 1. The number B
(d)
n of trees in Bd of size n ≥ 1 is equal to the number

T
(2d−1)
n of trees in T2d−1 of size n and is thus given by

B(d)
n =

1
(2d− 2)n + 1

((2d− 1)n
n

)
.
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Figure 1. An example of a -free two-coloured ternary tree of size 14 with

a black root and an example of a i
j

> -free 3-coloured ternary tree of size 20.

Next we consider the general case of k-coloured d-ary trees, where we have a
set of k colours. For simplicity in presentation we use the set of colours {1, 2, . . . , k}
and consider thus d-ary trees, which are labelled with labels from {1, 2, . . . , k}.

We introduce now the notion of i
j

> -free k-coloured d-ary trees, whose nodes
are labelled with labels from the set {1, 2, . . . , k} in such a way that each node
labelled i, 1 ≤ i ≤ k, does not have a d-th child labelled j < i. We denote by Gd,k

the family of i
j

> -free k-coloured d-ary trees.
For an arbitrary labelled or unlabelled d-ary tree T we define the rightmost

path of T as the path v0, . . . , vr, where v0 is the root of T , vi, for 1 ≤ i ≤ r, is
the d-th child of vi−1, and vr only has an empty d-th child. We can give then
an alternative definition of the family Gd,k as the family of k-coloured d-ary trees
T with the property, that the rightmost path of any subtree of T consists of a
sequence of non-decreasing labels. An example of a tree in G3,3 is given in Figure
1.

We state now our first enumeration result for trees in Gd,k of a given size,
which relates the subclass of i

j
> -free k-coloured d-ary trees whose roots are labelled

by k with ordinary (k(d− 1) + 1)-ary trees.

Theorem 2. The number G
[k]
n of those trees in Gd,k of size n ≥ 1 whose roots are

labelled by k is equal to the number T
(k(d−1)+1)
n of trees in Tk(d−1)+1 of size n and

is thus given by

G[k]
n =

1
k(d− 1)n + 1

((k(d− 1) + 1)n
n

)
.

Of course, Theorem 1 follows from Theorem 2, where we identify a white
node with label 1 and a black node with label 2.
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As a corollary we obtain a second enumeration result for trees in Gd,k of
a given size, which relates the whole set of i

j
> -free k-coloured d-ary trees with

k-tuples of ordinary (k(d− 1) + 1)-ary trees.

Corollary 1. The number Gn of trees in Gd,k of size n ≥ 0 is equal to the number
of k-tuples (T1, . . . , Tk) of trees in Tk(d−1)+1 with total size |T1|+ · · ·+ |Tk| = n and
is thus given by

Gn =
k

k(d− 1)n + k

((k(d− 1) + 1)n + k − 1
n

)
.

For all our results we give a proof via generating functions, but furthermore
we also present bijective proofs for our findings. E.g., when considering the special
instance of k-coloured binary trees, our bijection gives a procedure, which is easy to
implement and that allows to encode (and decode) a (k +1)-ary tree by a i

j
> -free

k-coloured binary tree with a root node labelled by k of the same size.
A proof of Theorem 1 is given in Section 2, whereas Theorem 2 and Corollary 1

are proven in Section 3.

2. TWO-COLOURED d-ARY TREES

2.1. A GENERATING FUNCTION PROOF OF THEOREM 1

We begin by stating the well-known fact that the generating function Td(z) =∑
n≥1

T
(d)
n zn of non-empty d-ary trees satisfies the functional equation

(3) Td(z) = z
(
1 + Td(z)

)d
.

This equation can be obtained, e.g., directly from the formal equation (1), see [8] for
a description of this symbolic method. An application of the Lagrange inversion
formula, see, e.g., [9], gives then immediately the enumeration result (2) for T

(d)
n :

(4) T (d)
n = [zn]Td(z) =

1
n

[Tn−1](1 + T )dn =
1
n

( dn
n− 1

)
=

1
(d− 1)n + 1

(dn
n

)
.

Now we are going to enumerate the number B
(d)
n of trees in Bd of size n,

i.e., of black-rooted two-coloured -free d-ary trees. To do this we introduce the
auxiliary family Wd of two-coloured -free d-ary trees with a white root. The
number of trees in Wd of size n is denoted by W

(d)
n .

Next we introduce the generating functions (where we drop the dependence
of these functions on z and d, for better readability):

B :=
∑
n≥1

B(d)
n zn, and W :=

∑
n≥1

W (d)
n zn.
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We use now the formal equation (1) of d-ary trees, which gives a decompo-
sition of a tree according to the root node, but additionally we take into account
that, for a root node coloured black, the d-th child, if it is non-empty, must be
coloured black also. This decomposition leads then immediately to the following
system of equations for the functions B and W :

W = z(1 + B + W )d,(5a)

B = z(1 + B + W )d−1(1 + B).(5b)

Multiplying equation (5a) with (1 + B) and plugging in (5b) we obtain

(1 + B)W = z(1 + B + W )d(1 + B) = B(1 + B + W ),

which gives by subtracting BW on both sides:

(6) W = B(1 + B).

When we plug in (6) into equation (5b) we obtain the following functional
equation for B:

B = z(1 + B + B(1 + B))d−1(1 + B) = z(1 + B)d−1(1 + B)d−1(1 + B)

= z(1 + B)2d−1.

Thus we obtain exactly the functional equation, which is satisfied by the generating
function T (2d−1)(z) of the number of non-empty (2d − 1)-ary trees T

(2d−1)
n of size

n, see (3). This, together with equation (4), shows then Theorem 1.

2.2. A BIJECTIVE PROOF OF THEOREM 1

Consider a tree C in Bd. We will give now a simple recursive procedure,
which eventually leads to an unlabelled (2d− 1)-ary tree of the same size.

Consider the d (possibly empty) subtrees C1, . . . , Cd of the root of C. The
basic idea is to split each of the first d − 1 subtrees C1, . . . , Cd−1 in exactly two
(possibly empty) trees, i.e., the tree Ci, 1 ≤ i ≤ d− 1, will be split into the pair of
trees Ci,1 and Ci,2. This sequence of trees C1,1, C1,2, C2,1, C2,2, . . . , Cd−1,1, Cd−1,2

together with the remaining subtree Cd will be attached, in this order, to the (now
uncoloured) root node forming the 2d− 1 subtrees.

To split any subtree Ci into two parts we use that C is -free, which gives
in particular, that the rightmost path of Ci consists of a possibly empty sequence
of white nodes, followed by a (possibly empty) sequence of black nodes. By cutting
the possibly occurring edge , which connects a white parent node with a d-th
child coloured black, we obtain then the pair of (possibly empty) trees Ci,1 and
Ci,2, where all nodes on the rightmost path of Ci,1 are coloured white and all nodes
on the rightmost path of Ci,2 are coloured black.
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The original tree. After level 0.

ε

After level 1.

ε

ε ε ε ε ε

After level 2.
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The resulting tree.
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Figure 2. An illustrating example of the bijection presented between a black-

rooted -free two-coloured ternary tree of size 14 and a 5-ary tree of the

same size. The recursive procedure is here performed level by level, where,

for better readability, the nodes in the resulting uncoloured 5-ary tree are

drawn as diamonds. We have omitted the empty subtrees ε in the original

tree as well as for the leaves of the resulting tree.

We observe that, for each subtree C1,1, C1,2, . . . , Cd−1,1, Cd−1,2, Cd, the
nodes on the rightmost path in such a subtree are monochrome. Thus we can
apply this procedure recursively to all of the subtrees obtained, which eventually
leads to a (2d − 1)-ary tree T of the same size as C. An example that illustrates
this procedure is given in Figure 2.

We retain here from giving the description of the inverse procedure, since it
follows from the general case as special instance k = 2 (and the convention, that a
white node corresponds to a labelling by 1 and a black node to a labelling by 2),
and this procedure for the general case is presented in Subsection 3.2.
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3. k-LABELLED d-ARY TREES

3.1. A PROOF OF THEOREM 2 VIA GENERATING FUNCTIONS

We consider now the family Gd,k of i
j

> -free k-coloured d-ary trees. Let us

denote by G
[i]
n , 1 ≤ i ≤ k, the number of those trees in Gd,k of size n ≥ 1 whose

roots are labelled by i. Furthermore we introduce the generating functions (again
we drop the dependence of these functions on z and d):

G1 :=
∑
n≥1

G[1]
n zn, . . . , Gk :=

∑
n≥1

G[k]
n zn.

We use now the formal equation (1) of d-ary trees, which gives a decompo-
sition of a tree according to the root node, but here we have to take into account
that, for a root node labelled i, the d-th child, if it is non-empty, must be labelled
by a label from the set {i, . . . , k}. This decomposition leads then immediately to
the following system of equations for the functions Gi, 1 ≤ i ≤ k:

G1 = z(1 + G1 + · · ·+ Gk)d,

G2 = z(1 + G1 + · · ·+ Gk)d−1(1 + G2 + G3 + · · ·+ Gk),
...(7)

Gk−1 = z(1 + G1 + · · ·+ Gk)d−1(1 + Gk−1 + Gk),

Gk = z(1 + G1 + · · ·+ Gk)d−1(1 + Gk).

Next we will show by induction on i that the functions Gk−i can be expressed
by Gk via

(8) Gk−i = Gk(1 + Gk)i, 1 ≤ i ≤ k − 1.

First we show (8) for i = 1. To do this we multiply the (k − 1)-th equation
of (7) with 1 + Gk, which gives

(1+Gk)Gk−1 = z(1+G1+· · ·+Gk)d−1(1+Gk)(1+Gk−1+Gk) = Gk(1+Gk−1+Gk),

and further the desired equation by subtracting Gk−1Gk on both sides:

(9) Gk−1 = Gk(1 + Gk).

Now we assume that (8) holds for all j, with 1 ≤ j < i ≤ k− 1. We multiply
the (k − i)-th equation of (7) with 1 + Gk−i+1 + · · ·+ Gk, which gives

(1 + Gk−i+1 + · · ·+ Gk)Gk−i

= z(1 + G1 + · · ·+ Gk)d−1(1 + Gk−i+1 + · · ·+ Gk)(1 + Gk−i + · · ·+ Gk)
= Gk−i+1(1 + Gk−i + · · ·+ Gk)
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and further by subtracting Gk−iGk−i+1 on both sides:

(10) (1 + Gk−i+2 + · · ·+ Gk)Gk−i = Gk−i+1(1 + Gk−i+1 + · · ·+ Gk).

We use now the induction hypothesis and evaluate the following sum, for
1 ≤ j < i:

1 + Gk−j + · · ·+ Gk = 1 + Gk +
j∑

`=1

Gk(1 + Gk)` = 1 + Gk

j∑
`=0

(1 + Gk)`(11)

= 1 + Gk

(
(1 + Gk)j+1 − 1

Gk

)
= (1 + Gk)j+1.

When we plug in (11) into both sides of equation (10) we obtain

(1 + Gk)i−1Gk−i = Gk−i+1(1 + Gk)i,

which, by using the induction hypothesis again, gives

Gk−i = Gk(1 + Gk)i

and finishes the proof of (8) by induction.
Since we have shown now equation (8) for all i, with 1 ≤ i ≤ k − 1, we can

evaluate the following sum analogous to (11) and obtain

(12) 1 + G1 + · · ·+ Gk = (1 + Gk)k.

When we plug in equation (12) into the last equation of (7) we get the following
functional equation for Gk:

(13) Gk = z(1 + Gk)k(d−1)+1.

Thus we obtain for Gk exactly the functional equation, which is satisfied by the
generating function Tk(d−1)+1(z) of the number of non-empty (k(d − 1) + 1)-ary
trees T

(k(d−1)+1)
n of size n, see (3). This, together with equation (4), shows thus

Theorem 2.

3.2. A BIJECTIVE PROOF OF THEOREM 2

Consider a tree H in Gd,k whose root is labelled by k. We will give now a
simple recursive procedure, which eventually leads to an unlabelled (k(d−1)+1)-ary
tree of the same size.

Consider the d (possibly empty) subtrees H1, . . . ,Hd of the root of H. The
basic idea is again to split each of the first d − 1 subtrees H1, . . . ,Hd−1, but now
in exactly k (possibly empty) trees, i.e., the tree Hi, 1 ≤ i ≤ d − 1, will be split
into a k-tuple of trees Hi,1, Hi,2, . . . , Hi,k. This sequence of trees H1,1, . . . , H1,k,
H2,1, . . . , H2,k, H3,1, . . . , Hd−1,k together with the remaining subtree Hd will be
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attached, in this order, to the (now uncoloured) root node forming the k(d− 1)+1
subtrees.

To split any subtree Hi into k parts we use that the rightmost path of Hi is
i

j
> -free and thus forming a non-decreasing sequence of labels, i.e., a possibly empty

sequence of 1, followed by a (possibly empty) sequence of 2, and so on, and ending
by a (possibly empty) sequence of k. By cutting each edge on the rightmost path
that is connecting two nodes with an unequal label, we obtain then the sequence
of (possibly empty) trees Hi,1, . . . , Hi,k, where all nodes on the rightmost path of
Hi,` are labelled by `, 1 ≤ ` ≤ k.

Again it is important to observe that, for each subtree H1,1, . . . , H1,k, H2,1,
. . . , H2,k, . . . , Hd−1,1, . . . , Hd−1,k, Hd, the nodes on the rightmost path in such a
subtree are equally-labelled. Thus we can apply this procedure recursively to all of
the subtrees obtained, which eventually leads to a (k(d− 1) + 1)-ary tree T of the
same size as H. An example that illustrates this procedure is given in Figure 3

Next we describe the inverse procedure and consider a non-empty tree T in
Tk(d−1)+1, which will be converted eventually into a i

j
> -free k-coloured d-ary tree

whose root is labelled by k.
First we will label the nodes of the tree as follows. The root of T will be

labelled by k. Then, for any node v in T , we label all children of v by carrying out
the following procedure recursively, where we start with the root node of T . The
(k(d− 1)+1)-th child (if non-empty) of a node v will be labelled by the same label
as the parent node v. Furthermore the (k(i− 1) + `)-th child (if non-empty) of v,
for 1 ≤ i ≤ d − 1 and 1 ≤ ` ≤ k, will be labelled by `. Thus the first k(d − 1)
children of a node v are labelled by the sequence 1, 2, . . . , k, 1, 2, . . . , k, . . . .

Second, we will carry out the following recursive procedure for the now k-
coloured (k(d − 1) + 1)-ary tree T . Consider the k(d − 1) + 1 (possibly empty)
subtrees S1, . . . , Sk(d−1)+1 of the root of T . The basic idea is now to merge
always k consecutive subtrees, namely Sk(i−1)+1, . . . , Sk(i−1)+k for any i with
1 ≤ i ≤ d− 1, into a single tree Hi. This sequence of trees H1, . . . , Hd−1 together
with the remaining subtree Sk(d−1)+1 will be attached, in this order, to the root
node forming the d subtrees.

To merge the subtrees Sk(i−1)+1, . . . , Sk(i−1)+k we use a simple consequence
of the labelling done before, namely that the nodes on the rightmost path of the
(k(d−1)+1)-ary tree Sk(i−1)+` are, for 1 ≤ i ≤ d−1 and 1 ≤ ` ≤ k, all labelled by
`. Thus we can simply concatenate the subtrees Sk(i−1)+1, . . . , Sk(i−1)+k in that
order by connecting the rightmost paths of these trees leading to a single tree Hi

whose rightmost path is i
j

> -free.
When we apply this procedure recursively to the subtrees obtained, this leads

to a i
j

> -free k-coloured d-ary tree H whose root is labelled by k, which is of the
same size as T . An example that illustrates this inverse procedure is given in
Figure 4.

It is seen easily that this is indeed the inverse procedure to the previously
given one and thus we obtained a bijection between the tree families considered.
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Figure 3. An illustrating example of the bijection presented between a i
j

> -

free 3-coloured binary tree of size 21 and a 4-ary tree of the same size. The

recursive procedure is here performed level by level, where, for better read-

ability, the nodes in the resulting uncoloured 4-ary tree are drawn as dia-

monds. We have omitted the empty subtrees ε in the original tree as well as

for the leaves of the resulting tree.
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The original tree after the labelling.
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Figure 4. An illustrating example of the bijection presented between a 4-

ary tree of size 21 and a i
j

> -free 3-coloured binary tree of the same size.

The recursive procedure is here performed level by level, where, for better

readability, the nodes in the original 4-ary tree are drawn as diamonds. We

have omitted the empty subtrees ε in the original tree as well as for the leaves

of the resulting tree.
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Figure 4 (Continuation)

3.3. A PROOF OF COROLLARY 1

This result follows easily from the generating functions proof of Theorem 2
carried out in Subsection 3.1. We consider here the generating function G(z) =∑

n≥0 Gnzn of the number Gn of i
j

> -free k-coloured d-ary trees of size n, which
can be expressed as G(z) = 1 + G1 + · · · + Gk, with generating functions Gi,
1 ≤ i ≤ k, as defined in Subsection 3.1 (we drop here the dependence of Gn and
G(z) on k and d).

Due to equation (12) we have the following relation between G(z) and the
corresponding generating function Gk for trees whose roots are labelled by k:

G(z) = (1 + Gk)k.

Since 1 + Gk = 1 + Tk(d−1)+1 is also the generating function of (possibly empty)
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(k(d− 1) + 1)-ary trees it follows that G(z) corresponds to the generating function
of k-tuples of (k(d− 1) + 1)-ary trees of total size n. The formula for Gn stated in
Corollary 1 follows immediately by using the Lagrange inversion formula:

Gn = [zn]G(z) =
k

n
[Gn−1](1 + G)n(k(d−1)+1)(1 + G)k−1

=
k

n
[Gn−1](1 + G)n(k(d−1)+1)+k−1 =

k

k(d− 1)n + k

((k(d− 1) + 1)n + k − 1
n

)
.

However, a bijective proof of Corollary 1 can also be given. Consider a tree
H in Gd,k of size n. We split now the tree H into k (possibly empty) trees H1,
. . . , Hk by cutting each edge on the rightmost path of H that connects nodes with
unequal labels (all nodes on the rightmost path of Hi are labelled by i, 1 ≤ i ≤ k).
This works, since H has an i

j
> -free colouring.

Now we can apply the recursive procedure described in the bijective proof of
Theorem 2 in Subsection 3.2 to each tree Hi, 1 ≤ i ≤ k, which maps Hi bijectively
to a (k(d − 1) + 1)-ary tree Ti of the same size as Hi. Thus we obtain a bijection
between H and a k-tuple (T1, . . . , Tk) of (k(d− 1) + 1)-ary trees of total size n.
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