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ON CONFORMALLY INVARIANT EXTREMAL

PROBLEMS

Vesna Manojlović

Abstract This paper deals with conformal invariants in the euclidean space
R

n, n ≥ 2, and their interrelation. In particular, conformally invariant met-
rics and balls of the respective metric spaces are studied.

1. INTRODUCTION

Conformal invariance has played a predominant role in the study of geometric
function theory during the past century. Some of the landmarks are the pioneering
contributions of Grötzsch and Teichmüller prior to the Second World War, and
the paper of Ahlfors and Beurling [1] in 1950. These results lead to farreaching
applications and have stimulated many later studies [12]. For instance, Gehring

and Väisälä [7], [16] have built the theory of quasiconformal mappings in Rn

based on the notion of the modulus of a curve family introduced in [1].

Our goal here is to study two kinds of conformally invariant extremal prob-
lems, which in special cases reduce to problems due to Grötzsch and Teich-

müller, respectively. These two classical extremal problems are extremal prob-
lems for moduli of ring domains. The Grötzsch and Teichmüller rings are the
extremal rings for extremal problems of the following type, which were first posed
for the case of the plane. Among all ring domains which separate two given closed
sets E1 and E2, E1 ∩ E2 = ∅, find one whose module has the greatest value.

In the general case these extremal problems lead to conformal invariants
λG(x, y) and µG(x, y) defined for a domain G ⊂ Rn and x, y ∈ G . A basic fact is
that λG(x, y)1/(1−n) and µG(x, y) are metrics. In the recent survey of Vuorinen

[21] an extensive research program was suggested for the study of metric spaces in
the context of geometric function theory. Motivated by [21] and following closely
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the ideas developed in [18] and [19] we study two topics: (a) the geometry of the
metric spaces (G, d) when d is λG(x, y)1/(1−n) or µG(x, y) and (b) the relations of
these two metrics to several other metrics. The main result is a revised version of
Chart 1 on p. 86 of [18], which takes into account some later developments, such
as [9], [10], [19].

Then we present an application to the geometry of balls in these metrics. As
a special case we investigate λG metric in B2 \ {0}, continuing work of [9].

The main method in this paper is the extremal length method of Ahlfors

and Beurling and various inequalities for the moduli of curve families. More
applications of the same method to quasiconformal mappings will be given in the
next paper of the author [22].

2. THE EXTREMAL PROBLEMS OF GRÖTZSCH AND

TEICHMÜLLER

In what follows, we adopt the standard notions related to quasiconformal
mappings from [16].

We use notation Bn(x, r) = {y ∈ R
n : |x − y| < r}, Sn−1(x, r) = {y ∈ R

n :
|x − y| = r}, Hn = {(x1, . . . , xn) ∈ Rn : xn > 0} and abbreviations Bn(r) =
Bn(0, r), Bn = Bn(1), Sn−1(r) = Sn−1(0, r) and Sn−1 = Sn−1(1). The (n − 1)-
dimensional surface area of Sn−1 is denoted by ωn−1.

For the modulus M(Γ) of a curve family Γ and its basic properties we refer
the reader to [16]. Its basic property is conformal invariance.

For E, F, G ⊂ R
n let ∆(E, F, G) be the family of all closed curves joining E

to F within G. More precisely, a path γ : [a, b] → R
n belongs to ∆(E, F, G) iff

γ(a) ∈ E, γ(b) ∈ F and γ(t) ∈ G for a < t < b.

If G is a proper subdomain of R
n, then for x, y ∈ G with x 6= y we define

(1) λG(x, y) = inf
Cx,Cy

M
(
∆(Cx, Cy; G)

)

where Cz = γz [0, 1) and γz : [0, 1) −→ G is a curve such that γz(0) = z and
γz(t) → ∂G when t → 1, z = x, y. This conformal invariant was introduced by J.

Ferrand (see [19]).

For x ∈ Rn \ {0, e1}, n ≥ 2, we define

(2) p(x) = inf
E,F

M
(
∆(E, F ; Rn)

)
,

where the infimum is taken over all pairs of continua E and F in R
n with 0, e1 ∈ E,

x,∞ ∈ F . This extremal quantity was introduced by O. Teichmüller (see [19],
[10]). For a connection between p(x) and λG, G = Rn \ {0}, see [19, (8.23)].

For a proper subdomain G of R
n and for all x, y ∈ G define

(3) µG(x, y) = inf
Cxy

M
(
∆(Cxy, ∂G; G)

)
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where the infimum is taken over all continua Cxy such that Cxy = γ[0, 1] and γ is
a curve with γ(0) = x and γ(1) = y. For the case G = Bn the function µBn(x, y)
is the extremal quantity of H. Grötzsch (see [19]).

Let (X, d1) and (Y, d2) be metric spaces and let f : X → Y be a contin-
uous mapping. Then we say that f is uniformly continuous if there exists an
increasing continuous function ω : [0, r1) → [0, r2) with r1, r2 > 0 , ω(0) = 0 and
d2(f(x), f(y)) ≤ ω(d1(x, y)) for all x, y ∈ X with d1(x, y) < r1 . We call the func-
tion ω the modulus of continuity of f . If there exist C, α > 0 such that ω(t) ≤ Ctα

for all t ∈ (0, t0) , t0 ∈ (0, r1) , we say that f is Hölder-continuous with Hölder

exponent α . If α = 1 , we say that f is Lipschitz with the Lipschitz constant
C or simply C-Lipschitz. If f is a homeomorphism and both f and f−1 are C-
Lipschitz, then f is C-bilipschitz or C-quasiisometry and if C = 1 we say that
f is an isometry. These conditions are said to hold locally, if they hold for each
compact subset of X .

In this section we introduce five metrics:

1) Spherical (chordal) metric q.

2) Quasihyperbolic metric kG of a domain G ⊂ Rn.

3) Distance ratio metric jG.

4) Seittenranta’s metric δG.

5) Apollonian metric αG.

The first one is defined on R
n = Rn ∪ {∞}. The second and the third ones are

defined in any proper subdomain G ⊂ Rn, both of them generalize hyperbolic
metric (on Bn or Hn) to arbitrary proper subdomain G ⊂ Rn. Seittenranta’s
metric is a natural, Möbius invariant analogue of the jG-metric.

Hyperbolic-type metrics

The metric q in R
n is defined by

(4) q(x, y) =





|x − y|√
1 + |x|2

√
1 + |y|2

, x 6= ∞ 6= y,

1√
1 + |x|2

, y = ∞.

Absolute (cross) ratio of an ordered quadruple a, b, c, d of distinct points in
R

n is defined by

|a, b, c, d| =
q(a, c) q(b, d)

q(a, b) q(c, d)
=

|a − c| |b − d|
|a − b| |c − d| .(5)
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The basic property of the absolute ratio is invariance under Möbius trans-
formations. For these facts see [19]. Now we introduce distance ratio metric or
jG-metric. For an open set G ⊂ R

n, G 6= R
n we define d(z) = d(z, ∂G) for z ∈ G

and

(6) jG(x, y) = log

(
1 +

|x − y|
min{d(x), d(y)}

)

for x, y ∈ G.

For a nonempty A ⊂ G we define the m-diameter of A by

m(A) = sup{m(x, y) |x, y ∈ A},

where m is any metric. The Euclidean diameter we denote by diam(A).

For an open set G ⊂ Rn, G 6= Rn, and a nonempty A ⊂ G such that
d(A, ∂G) > 0 we define

rG(A) =
d(A)

d(A, ∂G)
.

If ρ(x) > 0 for x ∈ G, ρ is continuous and if γ is a rectifiable curve in G, then
we define

`ρ(γ) =
∫

γ
ρ ds.

The Euclidean length of a curve γ is denoted by `(γ).

Also, for x, y ∈ G we define

dρ(x, y) = inf `ρ(γ),(7)

where the infimum is taken over all rectifiable curves from x to y.

It is easy to show that dρ is a metric in G.

Now we take any proper domain G ⊂ Rn and set ρ(x) = 1/d(x, ∂G).

The corresponding metric, denoted by kG, is called the quasihyperbolic metric
in G. Observing that

ρ
(
ϕ(x)

)
=

1

d
(
ϕ(x), ∂ (ϕG)

) =
1

d(x, ∂G)
= ρ(x),

for a Euclidean isometry ϕ, we see that

kG′(x′, y′) = kG(x, y), where G′ = ϕ(G), x′ = ϕ(x), y′ = ϕ(y).

Now we introduce Seittenranta’s metric δG [14]. For more details on Möbius

transformations in Rn see [3]. For an open set G ⊂ Rn with card∂G ≥ 2 we set

mG(x, y) = sup
a,b∈∂G

|a, x, b, y|

and

(8) δG(x, y) = log
(
1 + mG(x, y)

)
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for all x, y ∈ G.

Consider now the case of an unbounded domain G ⊂ Rn,∞ ∈ ∂G . Note
that if a or b in the supremum equals infinity, then we get exactly jG metric. This
implies that we always have jG(x, y) ≤ δG(x, y).

We will also use Apollonian metric studied by Beardon [4], (also see [2],
7.28 (2)) defined in open proper subsets G ⊂ Rn by

αG(x, y) = sup
a,b∈∂G

log |a, x, y, b| for all x, y ∈ G.

This formula defines a metric iff Rn \ G is not contained in an (n− 1)-dimensional
sphere in Rn.

In general, the hyperbolic-type metrics can be divided into length-metrics,
defined by means of integrating a weight function and point-distance metrics.

Another group may again be classified by the number of boundary points
used in the definition. So for instance, the j metric is one-point metric, while the
Apollonian metric is two-point metric.

Definition 1. A domain A ⊂ R
n is a ring if C(A) has exactly two components,

where C(A) denotes the complement of A ⊂ Rn.

If the components of C(A) are C0 and C1, we denote A = R(C0, C1), B0 =
C0∩A and B1 = C1∩A. To each ring A = R(C0, C1), we associate the curve family
ΓA = ∆(B0, B1, A) and the modulus of A is defined by mod (A) = M(ΓA). Next,
the capacity of A is by definition capA = ωn−1( mod A)1−n.

The complementary components of the Grötzsch ring RG,n(s) in Rn are

B
n

and [s · e1,∞], s > 1, while those of the Teichmüller ring RT,n(t) are [−e1, 0]
and [t e1,∞], t > 0. We shall need two special functions γn(s), s > 1, and τn(t),
t > 0, to designate the moduli of the families of all those curves which connect
the complementary components of the Grötzsch and Teichmüller rings in Rn,
respectively:

γn(s) = M(Γs) = γ(s), Γs = ΓRG,n
(s),

τn(t) = M(∆t) = τ(t), ∆t = ΓRT,n
(t).

These functions are related by a functional identity [5], Lemma 6

(9) γn(s) = 2n−1τn(s2 − 1).

Definition 2. Given r > 0, we let RΨn(r) be the set of all rings A = R(C0, C1)
in R

n with the following properties :

1) C0 contains the origin and a point a such that |a| = 1.

2) C1 contains ∞ and a point b such that |b| = r.

Teichmüller first considered the following quantity in the planar case (n = 2) :

τn(r) = inf M(ΓA) = inf{p(x)
∣∣ |x| = r},
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where the infimum is taken over all rings A ∈ RΨn(r) and p(x) is as in (2). For
n ≥ 3 the function τn was studied in [5] and in [10].

Theorem 1. [16, Theorem 11.7] The function τn : (0,∞) → (0,∞) has the
following properties :

1) τn is decreasing,

2) limr→∞ τn(r) = 0 ,

3) limr→0 τn(r) = ∞ ,

4) τn(r) > 0 for every r > 0.

Moreover, τn : (0,∞) → (0,∞) and γn : (1,∞) → (0,∞) are homeomorphisms.

From the definition of τn and from the conformal invariance of the modulus,
we obtain the following estimate:

Theorem 2. Suppose that A = R(C0, C1) is a ring and that a, b ∈ C0 and c,∞ ∈
C1. Then

M(ΓA) ≥ τn

( |c − a|
|b − a|

)
.

Here equality holds for the Teichmüller ring RT,n(t), when a = 0, b = −e1, c =
te1, t > 0 and C0 = [−e1, 0], C1 = [te1,∞).

Theorem 3. Let C ⊂ Bn be a connected compact set containing 0 and x, where
|x| < 1. Then the capacity of a ring domain with components C0 = C, C1 = {x :
|x| ≥ 1} is at least γn(1/|x|). Here equality holds for the ring with the complemen-
tary components [0, |x|e1] and Rn \ Bn the image of the Grötzsch ring RG,n(1/|x|)
under the inversion in Sn−1.

These theorems state the extremal properties of the Teichmüller and
Grötzsch rings and their proofs are based on the symmetrization theorem in
[5, Theorem 1].

3. MODULI OF CONTINUITY

In this section we investigate the moduli of continuity of the identity mappings
idG : (G, ρ) → (G, d) where ρ and d are chosen from the set of interesting metrics
defined on G (like quasihyperbolic metric kG, modulus metric µG etc.).

Hence, we are interested in results of type

(10) d(x, y) ≤ ζ
(
ρ(x, y)

)
= ζd

ρ

(
ρ(x, y)

)
, x, y ∈ G.

We give several estimates of this type, and then we collect these results in charts
at the end of this section.

Note that in our charts we have λ−1
G , as well as in the inequalities of type

(10); however reader should be aware that in general λ−1
G is not a metric. In fact

λ
1/(1−n)
G is always a metric. For more details on this matter see [21].
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It is well known [8] that jG(x, y) ≤ kG(x, y), so ζj
k(t) = t. We shall next

prove this inequality.

Lemma 1. Let G be a proper subdomain of Rn .

1) For x, y ∈ G

kG(x, y) ≥ log

(
1 +

m(x, y)

min{d(x), d(y)}

)
≥ jG(x, y),

where m(x, y) = inf{`(γ) | γ is a curve joining x and y in G}.
2) If there is M ∈ (0,∞) such that d(x) ≤ M for all x ∈ G, then for all x, y ∈ G

kG(x, y) ≥ |x − y|/M.

Proof. 1) We may assume 0 < d(x) ≤ d(y). Choose a rectifiable arc γ : [0, s] → G
from x to y, parametrized by arc length:

γ(0) = x, γ(s) = y;

obviously s ≥ |x − y|. For any 0 ≤ t ≤ s we have

d(γ(t)) ≤ d(x) + t, (a key observation),

so,

lρ(γ) ≥
∫ s

0

dt

d(x) + t
= log

d(x) + s

d(x)
≥ log

d(x) + |x − y|
d(x)

= jG(x, y).

2) Let γ be a rectifiable curve joining x with y. Then
∫

γ

|dx|
d(x, ∂G)

≥
∫

γ

|dx|/M ≥ |x − y|/M

and hence the assertion follows. �

The inequality reverse to Lemma 16 (1) is not true in general; a domain G
such that there is a constant c > 0 with kG(x, y) ≤ c jG(x, y) for all x, y ∈ G is
called a uniform domain, so in that case ζk

j (t) = ct.

Lemma 2. [18, Lemma 2.21] Let G be a proper subdomain of R
n. If x ∈ G,

d(x) = d(x, ∂G) and y ∈ Bn(x, d(x)) = Bx, x 6= y, then

(11) λG(x, y) ≥ λBx
(x, y) ≥ cn log

(
d(x)

|x − y|

)

where cn is the positive number in [16, (10.11)]. There exists a strictly increasing
function h1 : (0, +∞) −→ (0, +∞) with lim

t→0+

h1(t) = 0 and lim
t→+∞

h1(t) = +∞,

depending only on n, such that

(12) λG(x, y) ≤ h1

(
min{d(x), d(y)}

|x − y|

)
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for x, y ∈ G, x 6= y. If x ∈ G and y ∈ Bn
(
x, d(x)

)
= Bx, x 6= y, then

(13) µG(x, y) ≤ µBx
(x, y) = capRG

(
d(x)

|x − y|

)
≤ ωn−1

(
log

(
d(x)

|x − y|

))1−n

.

From (13) we get µG(x, y) ≤ γn(d(x)/|x − y|) for x ∈ G and y ∈ Bx. It is
equivalent with µG(x, y) ≤ γn(1/r) where r = |x − y|/d(x).

We can express jG(x, y) in terms of r: r = ejG(x,y) − 1 and obtain

µG(x, y) ≤ γn

(
1

ejG(x,y) − 1

)
.

This gives ζµ
j (t) = γn

(
1/(et − 1)

)
locally.

Lemma 3. [18, Lemma 2.39] For n ≥ 2 there exists a strictly increasing function
h2 : [0, +∞) → [0, +∞) with h2(0) = 0 and lim

t→+∞
h2(t) = +∞ with the following

properties.

If E is closed and F is compact in Rn then

(14) M
(
∆(E, F )

)
≤ h2(T ); T = min{jRn\E(F ), jRn\F (E)}.

In particular, if G is a proper subdomain of Rn, then

(15) µG(x, y) ≤ h2

(
3kG(x, y)

)

for all x, y ∈ G. Moreover, there are positive numbers b1, b2 depending only on n
such that

(16) µG(x, y) ≤ b1kG(x, y) + b2

for all x, y ∈ G.

From (15) we have ζµ
k (t) = h2(3t).

Lemma 4. [18, Lemma 2.44] If E, F ⊆ Rn are disjoint continua, then

M
(
∆(E, F )

)
≥ c̄n min{jRn\E(F ), jRn\F (E)}

where c̄n is a positive number depending only on n.

Corollary 1. [18, Corollary 2.46] If E and F are disjoint continua in R
n and

∞ ∈ F, and cn > 0 is as in (11), then

M(∆(E, F )) ≥ cnjRn\F (E).

Corollary 2. [21, Lemma 6.23] Let G ⊆ Rn be a domain G 6= Rn and with a
connected boundary ∂G. Then

(17) µG(a, b) ≥ cnjG(a, b)
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holds for a, b ∈ G. If, in addition, G is uniform, then

(18) µG(a, b) ≥ B kG(a, b)

for all a, b ∈ G.

The first part of Corollary 2 gives ζj
µ(t) = t/cn if ∂G is connected. Inequality

(18) gives ζk
µ(t) = c t if ∂G is connected and G is uniform.

Lemma 5. [2, Corollary 15.13] Let G be a proper subdomain of Rn, x and y
distinct points in G and m(x, y) = min{d(x), d(y)}. Then

(19) λG(x, y) ≤
√

2τn

( |x − y|
m(x, y)

)
.

From (19) using again r = ejG(x,y) − 1, r = |x − y|/m(x, y), we have

√
2τn(ejG(x,y) − 1) ≥ λG(x, y),

and then, since τn is decreasing, ejG(x,y) ≤ τ−1
n (λG(x, y)/

√
2) + 1 and from here

jG(x, y) ≤ log

(
1 + τ−1

n

(
1√

2λ−1
G (x, y)

))
.

Finally we obtain ζj
λ−1(t) = log

(
1 + τ−1

n (1/(
√

2t))
)
.

Definition 3. A closed set E in R
n is called a c-quasiextremal distance set or

c-QED exceptional or c-QED set, c ∈ (0, 1], if for each pair of disjoint continua
F1, F2 ⊆ R

n \ E

(20) M
(
∆(F1, F2; R

n \ E)
)
≥ cM

(
∆(F1, F2)

)
.

If G is a domain in R
n such that R

n \ G is a c-QED set, then we call G a c-QED
domain.

Theorem 4. [20, Theorem 6.21] Let G be a c-QED domain in Rn. Then

(21) λG(x, y) ≥ cτn(s2 + 2s) ≥ 21−ncτn(s)

where s = |x − y|/ min
(
d(x), d(y)

)
.

From the first inequality in (21), taking into account that s = ejG(x,y) − 1,
we obtain

λ−1 =
1

λ
≤ 1

c

1

τn((s + 1)2 − 1)
=

1

c

1

τn(e2jG(x,y) − 1)
.

This gives ζλ−1

j (t) =
1

c

1

τn(e2t − 1)
for a c-QED domain G.
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Combining ζj
k and ζλ−1

j we estimate λ−1
G (x, y) in terms of kG(x, y), so ζλ−1

k =

ζλ−1

j ◦ ζj
k = ζλ−1

j . In fact, we have

λ−1
G (x, y) ≤ 1

c

1

τn(e2jG(x,y) − 1)
≤ 1

cτn(e2kG(x,y) − 1)
.

The functions ζλ−1

µ , ζk
λ−1 , ζµ

λ−1 are obtained in the same fashion as ζλ−1

k ,

namely as compositions of appropriate functions ζd
ρ . We use the following inequa-

lities.

For ζλ−1

µ we have

λ−1
G (x, y) ≤ 1

cτn(e2jG(x,y) − 1)
≤ 1

cτn(e2µ/cn − 1)
=

1

cτn(ebµ − 1)
,

where the second inequality follows from (17) and where b = 2/cn and where cn is
the constant from Corollary 1.

For ζk
λ−1 we have

kG ≤ c jG(x, y) ≤ c log (1 + u) , u = τ−1
n

(
1√

2λ−1
G (x, y)

)

and for ζµ
λ−1 we have

µG ≤ γn

(
1

ejG(x,y) − 1

)
≤ γn

(
1

elog(1+u) − 1

)
= γn

(
1

u

)
.

Theorem 5. [14, Theorem 3.4] The inequalities jG(x, y) ≤ δG(x, y) ≤ 2jG(x, y)
hold for every open set G ⊂ Rn.

So, we deduce that ζj
δ (t) = t and ζδ

j (t) = 2t.

Theorem 6. [14, Theorem 4.2] Let G ⊂ Rn be a convex domain, then jG(x, y)
≤ αG(x, y).

This means that ζj
α(t) = t for convex domains.

Theorem 7. [14, Theorem 6.2] Let G be a domain in Rn, for which card∂G ≥ 2
and ∂G is connected. Then, for distinct points x, y ∈ G,

µG(x, y) ≥ τn

(
1

eδG(x,y) − 1

)
.

Because τn is a decreasing homeomorphism we get

τ−1
n

(
µG(x, y)

)
≤ 1

eδG(x,y)−1

and from here

δG(x, y) ≤ log

(
1 +

1

τ−1
n

(
µG(x, y)

)
)

.
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Hence, ζδ
µ(t) = log

(
1 + 1/τ−1

n (t)
)

if ∂G is connected and has at least two points.

Theorem 8. [14, Theorem 6.5] Let G ⊂ R
n be a domain with card ∂G ≥ 2. If mG

is as in the definition of δG (8), then

λG(x, y) ≤ τn

(
mG(x, y)

2

)
.

Expressing mG(x, y) in terms of δG(x, y) we get:

λG(x, y) ≤ τn

(
eδG(x,y) − 1

2

)

and from here we obtain

δG(x, y) ≤ log

(
1 + 2τ−1

n

(
1

λ−1
G (x, y)

))
.

This means that ζδ
λ−1 (t) = log

(
1 + 2τ−1

n (1/t)
)

for domains with card (∂G) ≥ 2.

At first, we give Chart 1. Here the functions hj are defined as follows:

h3(t) = γn

(
1

et − 1

)
, h4(t) =

1

cτn(e2t − 1)
, h13(t) = log

(
1 + τ−1

n

(
1√
2 t

))

and function h2(t) appears in Lemma 3.

1 2 3 4
ζk

j (t) = ct
G uniform
ζk

j (t) = ϕ(t)
G ϕ domain

ζµ
j (t) = h3(t)

locally
ζλ−1

j (t) = h4(t)
G c-QED domain

5 6 7 8

ζj
k(t) = t ζµ

k (t) = h2(3t) ζλ−1

k = ζλ−1

j

9 10 11 12

ζj
µ(t) = t/cn

∂G connected

ζk
µ(t) = ct

G uniform
∂G connected

ζλ−1

µ = ζj
µ ◦ ζλ−1

j

G c-QED domain
∂G connected

13 14 15 16

ζj

λ−1
(t) = h13(t)

ζk
λ−1 = ζj

λ−1
◦ ζk

j

G uniform
ζµ

λ−1
= ζj

λ−1
◦ ζµ

j

locally

Chart 1

Function ζµ
j can be written in a different form using the estimate of γn func-

tion. We define functions Φ and Ψ as in [19, 7.19] by

(22) γn(s) = ωn−1

(
log(Φ(s))

)n−1
, s > 1,
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(23) τn(t) = ωn−1

(
log(Ψ(t))

)n−1
, t > 0.

Lemma 6. [19, Lemma 7.22] For each n ≥ 2 there exists a number λn ∈ [4, 2 en−1),
λ2 = 4, such that

(24) t ≤ Φ(t) ≤ λnt, t > 1,

(25) t + 1 ≤ Ψ(t) ≤ λ 2
n (t + 1), t > 0.

From (23) we have that ωn−1

(
log(λ2

n(t + 1))
)1−n ≤ τn(t) ≤ ωn−1

(
log(t +

1)
)1−n

.

From (22) we have

(26) ωn−1 (log λnt)1−n ≤ γn(t) ≤ ωn−1 (log t)1−n , t > 1.

Using the right side of inequality (26) we have

γn

(
1

et − 1

)
≤ ωn−1

(
log

(
1

et − 1

))1−n

≤ ωn−1

(
log

(
1

t

))1−n

.

This gives ζµ
j (t) ≤ ωn−1

(
log(1/t)

)1−n
locally.

4. INCLUSION RELATIONS FOR BALLS

Each statement on modulus of continuity has its counterpart stated in terms
of inclusions of balls. Namely, if for some metrics d1 and d2 there holds

d1(x, y) < t ⇒ d2(x, y) < ζ(t),

then
Dd1

(x, t) ⊂ Dd2
(x, ζ(x, t)),

where

(27) Dm(x, t) = {z ∈ G |m(x, z) < t},

when x ∈ G and t > 0.

A related question is to find, for a given x ∈ G and t > 0, minimal ζ(x, t)
such that

Dd1
(x, t) ⊂ Dd2

(
x, ζ(x, t)

)
,

This is circumscribed ball problem for a fixed x ∈ G .

By [19, (3.9)], we have the inclusions

(28) Bn
(
x, r d(x)

)
⊂ Dk(x, M) ⊂ Bn

(
x, R d(x)

)
,
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where r = 1 − e−M and R = eM − 1. It is easy to see that both numbers are best
possible for the case of the half space Hn.

It was proved in [2, 15.13] that if G is a proper subdomain of Rn and if
x, y ∈ G with x 6= y, then

(29) λG(x, y) ≤ inf
z∈∂G

(
λRn\{z}(x, y)

)
≤

√
2τn

( |x − y|
min{d(x), d(y)}

)
.

Theorem 9. [9, Theorem 6.11] Let G be a proper subdomain of R
n and let t > 0.

If we denote c1 = 1/
(
1 + τ−1

n (t/
√

2)
)
, c2 =

√
τ−1
n (2t)/

(
1 + τ−1

n (2t)
)

and c3 =

τ−1
n (t/

√
2), then the inclusions

(30) Dλ−1(a, t) ⊂ {z ∈ G | d(z) > c1d(a)},

(31) Dλ−1(a, t) ⊃ Bn
(
a, c2d(a)

)
⊃ Dk

(
a, log(c2 + 1)

)

and

(32) Dλ−1(a, t) ⊂ Bn
(
a, c3d(a)

)
∩ G

are valid for all a ∈ G. If, in addition, t >
√

2τn(1), we have that

(33) Bn(a, c3d(a)) ⊂ Dk

(
a, log(1/(1 − c3))

)
.

To prove the inclusion (32), we apply (29) to obtain

λG(a, z) ≤
√

2τn

( |z − a|
d(a)

)
.

From here with the assumption t ≤ λG(a, z) we have |z − a| < τ−1
n (t/

√
2)d(a).

Since Dλ−1 ⊂ G, the inclusion (32) holds.

Inclusion (33) follows directly from (28) after we notice that the condition
t >

√
2τn(1) implies that c3 < 1 and hence that the ball Bn

(
a, c3d(a)

)
is included

in G.

Theorem 10. [9, Theorem 6.18] Let G be a proper subdomain of Rn and assume
that G has a connected, nondegenerate boundary. Let t > 0 and denote d1 =
τ−1
n (t)/

(
1 + τ−1

n (t)
)
, d2 = 1/γ−1

n (t) and d3 = 1/τ−1
n (t). Then, for all a ∈ G, the

following inclusions hold

(34) Dµ(a, t) ⊂ {z ∈ G | d(z) > d1d(a)},

(35) Dµ(a, t) ⊃ Bn
(
a, d2d(a)

)
⊃ Dk

(
a, log(d2 + 1)

)
,
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(36) Dµ(a, t) ⊂ Bn
(
a, d3d(a)

)
∩ G.

If in addition t < τn(1), then

(37) Bn
(
a, d3d(a)

)
⊂ Dk

(
a, log(1/(1 − d3))

)
.

The numbers d1, d2 and d3 are best possible for these inclusions.

We prove (35) only, because that part is used later on.

We assume that a, z ∈ G and that |z − a| ≤ d2 d(a). Then, since γ−1
n (t) > 1,

we have d(z, a) < d(a). We consider the following curve families

ΓJ = ∆(Jaz, ∂G; G), Γ = ∆
(
Jaz, S

n−1
(
a, d(a)

)
; Bn

(
a, d(a)

) )
,

and

(38) Γ̃ = ∆([z′, +∞), Sn−1; Rn \ Bn),

where z′ = d(a)/|z − a| e1. Since Jaz is a continuum which joins a and z, we have

(39) µG(a, z) ≤ M(ΓJ)

and since Γ < ΓJ , we have that M(ΓJ) < M(Γ).

Using Möbius transformations, we get

(40) M(Γ) = M(Γ̃) = γn

(
d(a)

|z − a|

)
,

and since |z−a| < d2 d(a) and γn is a strictly decreasing homeomorphism, it follows
that

(41) γn

(
d(a)

|z − a|

)
< γn

(
1

d2

)
= t.

Combining all these inequalities, we get µG(a, z) < t, which proves the left
side of (35). The right side inclusion follows from (28).

Theorem 9 ((32) and (33)) gives

Theorem 11. Let G be a proper subdomain of Rn and a, b ∈ G distinct

λ−1(a, b) <
1

t
⇒ k(a, b) < log

1

1 − τ−1
n

(
t√
2

) , for t >
√

2τn(1)

λ−1(a, b) < s ⇒ k(a, b) < log
1

1 − τ−1
n

(
1√
2s

) ,

ζk
λ−1 (s) = log

1

1 − τ−1
n

(
1√
2s

) , s <
1√

2 τn(1)
.
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Furthermore, if G is bounded, then we obtain λ−1(x, a) < 1/t ⇒ |x− a| < c3d(a) <

diam(G) c3(1/t) and from here ζ
|·|
λ−1(t) = τ−1

n

(
1/(

√
2t)
)
diam(G) .

From Theorem 10 we deduce

Theorem 12. In a domain G with connected nondegenerate boundary :

(42) Dµ(a, t) ⊃ Dk

(
a, log(d2 + 1)

)
, d2 =

1

γ−1
n (t)

,

and µ(a, b) < t if k(a, b) < log(d2 + 1).

Also, ζµ
k (s) = γn(1/(es − 1)). If we put

s = log

(
1

γ−1
n (t)

+ 1

)
, we have es − 1 =

1

γ−1
n (t)

, t = γn

(
1

es − 1

)
.

Theorem 13. [14, Theorem 3.8] If G ⊂ Rn is open, x ∈ G and t > 0 then

Dj(x, t) ⊂ Bn(x, R)

where R = (et − 1) d(x). This formula for R is the best possible expressed in terms
of t and d(x) only.

Therefore, for a bounded domain G using d(x) ≤ diam(G), we get ζ
|·|
j (t) =

(et − 1) diam(G).

Theorem 14. [14, Theorem 3.10] If G ⊂ Rn is an open set, x ∈ G and t > 0 then
Dδ(x, t) ⊂ Bn(x, R) where R = (et − 1) d(x).

As above, we get, for a bounded domain G, ζ
|·|
δ (t) = (et − 1) diam(G).

In Chart 2 functions in cells 3,4,7 and 14 have been modified.

1 2 3 4

ζk
j (t) = ct

G uniform
ζk

j (t) = ϕ(t)
G ϕ domain

ζµ
j (t) = g3(t)

locally
ζλ−1

j (t) = g4(t)
G c-QED domain

5 6 7 8

ζj
k(t) = t

ζµ
k (t) = g7(t)

∂G connected, non-
degenerate

ζλ−1

k = ζλ−1

j

9 10 11 12

ζj
µ(t) = t/cn

∂G connected

ζk
µ(t) = ct

G uniform
∂G connected

ζλ−1

µ = ζj
µ ◦ ζλ−1

j

G c-QED domain
∂G connected

13 14 15 16

ζj

λ−1
(t) = g13(t)

ζk
λ−1(t) = g14(t)

t < 1√
2τ2(1)

ζµ

λ−1
= ζj

λ−1
◦ ζµ

j

locally

Chart 2
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In Chart 2 the functions gj are defined as follows:

g3(t) = ωn−1

(
log

(
1

t

))1−n

, g4(t) =
1

cτn(e2t − 1)
,

g7(t) = γn

(
1

et − 1

)
, g13(t) = log

(
1 + τ−1

n

(
1√
2 t

))
,

g14(t) = log
1

1 − τ−1
2 (1/(

√
2t))

.

Example 1. For G ⊂ R
n we choose z0 ∈ ∂G, a sequence xk ∈ G such that xk → z0 and

a sequence yk ∈ G such that

(43) |yk − z0| <
|xk − z0|

k
.

Clearly |xk − yk| → 0 and

(44) |xk − yk| > |xk − z0| − |yk − z0| > |xk − z0|
(

1 − 1

k

)
.

But

jG(xk, yk) ≥ log

(
1 +

|xk − yk|
|yk − z0|

)
≥ log

(
1 +

1 −

1

k

1

k

)
= log(k) → +∞.

Hence id : (G, | · |) −→ (G, jG) is not uniformly continuous. By this reason,
corresponding functions in the charts do not exist (see Chart 3c and Chart 3d).

Also, for a fixed small d > 0 we can find x, y ∈ G such that |x − y| = d and
d(x, ∂G) is as small as we like.

So we get kG(x, y) as large as we like and there is no upper bound of kG(x, y)
in terms of |x − y|.

For a bounded domain G we see by Lemma 1 (1) that the modulus of conti-

nuity id : (G, kG) → (G, | · |) is ζ
|·|
k (t) = t diam(G).

All the remaining functions are obtained by composition of the above moduli
of continuity.

And finally we have Chart 3, which is split in four subcharts: 3a, 3b, 3c and
3d, which are given in the Section 6.

Sharper results can be obtained for special domains, for example G = Rn\{0}
was studied by R. Klén [11] in relation to jG metrics.

5. REMOVING A POINT

Let M be a collection of metrics on a domain G ⊂ Rn and Dm(x, T ) is as in
(27) and m ∈ M. Let

rT = sup{r > 0 : Bn(x, r) ⊂ Dm(x, T )},
RT = inf{r > 0 : Bn(x, r) ∩ Dm(x, T ) = ∅}.
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A natural question is whether we can find a lower bound for rT and an upper bound
for RT .

Problem 1. Find the radius of circum-
scribed ball RT in the case G = C \ {0}
and m = λ−1

G (see Figure 1).

It is evident from the definition of λG

that adding new points, even isolated ones,
to the boundary of G will affect the value
of λG(x, y) for fixed points x, y ∈ G. We
study this phenomenon in the case when
G = C \ {0}.

Let h(z) = z/|z|2 be an inversion. Since
h : G → G (h is an isometry for λ metric)
we have

λG(1, z) = λG(1, h(z)). Figure 1. Radius of circumscribed ball

From [15, (3.3), (3.22)] we have

(45) p(z) =
2π

log M(2z − 1)
, z ∈ C \ {0, 1} and

(46) log M(2eiθ − 1) =
2π K

(
sin(θ/4)

)
K
(
cos(θ/4)

)

K
2
(
sin(θ/4)

)
+ K

2
(
cos(θ/4)

) ,

where

K(r) =

∫ 1

0

dx√
(1 − x2)(1 − r2x2)

, for 0 < r < 1.

If we put z = eiθ we have

p(eiθ) =
K

2( sin(θ/4)
)

+ K
2( cos(θ/4)

)

K
(
sin(θ/4)

)
K
(
cos(θ/4)

) .

For |z| = 1 we obtain λG(1, z) = p(z).

Choose θ such that sin(θ/2) = RT /2. From here θ = 2 arcsin(RT /2). Now if
we put

(47) y =
K
(
sin(θ/4)

)

K
(
cos(θ/4)

) =
2

π
µ
(
cos(θ/4)

)

we have

p(eiθ) = y +
1

y
=

1

T
.
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We are interested for solutions y < 1 because we want θ < π. From here y =
2T/(1 +

√
1 − 4T 2). Since from (47)

θ = 4 arccos
(
µ−1

(πy

2

))

now we have
(48)

θ = 4 arccos

(
µ−1

(
π

2

2T

1 +
√

1 − 4T 2

))
= 4 arccos

(
µ−1

(
πT

1 +
√

1 − 4T 2

))
.

Hence, the radius of the circumscribed sphere is

RT = 2 sin(θ/2), T ∈ (0, 1/2), θ from (48).

Open question.

(1) Can we find rT in the case above?

(2) Can we estimate RT , where G is now bounded subset of C (instead of
R2 \ {0})?

(3) Consider µG-balls where ∂G is connected, say ∂G = [0, e1]. Can we find
a lower bound for rT (upper bound for RT ) in this case?

Problem 2. (Estimate for λB2\{0}(x, y)) Next we investigate the following situa-
tion: G ⊆ Rn is domain, a ∈ G, G′ = G \ {a}. Is λG(x, y) = λG′(x, y) true under
some additional assumptions, like x, y close to ∂G?

We consider a special case where G = B2

and a = 0.

In [13, Lemma 2.8] it is proven that if Γ0 =
∆([0, x], [ỹ, x/|x|]; B2), where ỹ = (|y|/|x|)x
and if we put |x| = r, |ỹ| = s (see Figure 2),
then we have

(49) M(Γ0) = τn

(
(s − r)(1 − rs)

r(1 − s)2

)
. Figure 2. Family of curves Γ0.

Further, from [18, (2.6)]] we have that if
∆0 = ∆([−x/|x|,−x], [x, x/|x|]; B2) and if |x| =
r as before (see Figure 3), then

M(∆0) =
1

2
τn

(
4r2

(1 − r2)2

)
.

Also, using Möbius transformation Tr : B2

→ B2, T (r) = 0 we can map family of curves
∆1 to family of curves ∆′

1, where Figure 3. Family of curves ∆0.

∆1 = ∆([−x/|x|,−ỹ], [0, x]; B2) and ∆′
1 = ∆([−x/|x|,−ỹ′], [−x, 0]; B2)

.
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We know that
ρ(−s, 0) = ρ(−r,−t),

where r and s are as before and −t = Tr(−s). Further, this is equivalent to

(50) log
1 + s

1 − s
= log

1 + t

1 − t

1 − r

1 + r
.

Solving (50) in t we obtain t = (s + r)/(1 + sr).

Figure 4. Möbius transformation Tr.

Now we have (see Figure 4)

M(∆1) = M(∆′
1) = τn

(
(t − r)(1 − tr)

r(1 − t)2

)
= τn

(
s(1 + r)2

r(1 − s)2

)
.

The first equality holds because Tr is a conformal map, the second one follows
from (49) and the third one from the expression for t.

Now, if we put in last term that r = s, we obtain

M(∆1) = τn

((1 + r

1 − r

)2
)

.

The question is when do we have M(∆1) ≥ M(∆0). In other words, when
does the inequality

(51) τn

((1 + r

1 − r

)2
)

≥ 1

2
τn

(
4r2

(1 − r2)2

)

hold?

Applying formula [2, 5.19 (5)]:

1

2
τn(t) ≥ τn

(
(
√

t +
√

t + 1 )4 − 1
)

for t = 4r2/(1 − r2)2 we have

1

2
τn

(
4r2

(1 − r2)2

)
= τn

(
8r(r2 + 1)

(1 − r)4

)
.
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Then (51) is equivalent to

(
1 + r

1 − r

)2

≤ 8r(r2 + 1)

(1 − r)4
,

since τn is decreasing. The last inequality is equivalent to

r4 − 8r3 − 2r2 − 8r + 1 ≤ 0.

This inequality holds for r ∈ [2 +
√

5 − 2
√

2 +
√

5, 1) and

2 +
√

5 − 2

√
2 +

√
5 < 0.12.

This gives the answer to the question: For which values of |x| we have

λA(x,−x) = M
(
∆(E,−E; B2)

)
,

where A = B2 \ {0}, E = [x, x/|x| ]?
A related result can be found in Heikkala’s dissertation, [9, Theorem 7.3].

In fact, this theorem deals with the more general situation: If x and y are close to
the boundary and far apart then λBn\{0}(x, y) = λBn(x, y). His theorem is:

Theorem 15. Let G = Bn \ {0} and let x, y ∈ G with |x − y| ≥ δ > 0. Then, if
min{|x|, |y|} ∈ (r1, 1) with r1 = (

√
δ4 + 64 − δ2)/8, we have that

λG(x, y) = λBn(x, y).

However, we have in the special case x = −y, better constant (letting δ = 2|x|
and r1 = |x| in Theorem 7.3 gives equation r3

1 + r2
1 − 1 = 0, and its real root is

larger than 0.75, and consequently larger than 0.12).

6. CHARTS FOR MODULI OF CONTINUITY

Here, as noted at the end of Section 4, we present Charts 3a, 3b, 3c and 3d.

1 2 3 4

ζδ
α(t) = 2t

G convex
ζj

α(t) = t
G convex

ζk
α(t) = ct

G convex,
uniform

5 6 7 8

ζα
δ (t) = t ζj

δ (t) = t
ζk

δ (t) = ct
G uniform

9 10 11 12

ζα
j (t) = 2t ζδ

j (t) = 2t
ζk

j (t) = ct
G uniform

13 14 15 16

ζα
k (t) = 2t ζδ

k(t) = 2t ζj
k(t) = t

Chart 3a
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1 2 3 4

ζq
α(t) = u1(t)

G convex
ζ
|·|
α (t) = u1(t)

G convex

ζµ
α(t) = u2(t)

G convex,
locally

ζλ−1

α (t) = u3(t)
G c-QED, convex

5 6 7 8

ζq
δ (t) = u1(t) ζ

|·|
δ (t) = u1(t) ζµ

δ (t) = u2(t)
locally

ζλ−1

δ (t) = u3(t)
G c-QED

9 10 11 12

ζq
j (t) = u1(t) ζ

|·|
j (t) = u1(t) ζµ

j (t) = u2(t)
locally

ζλ−1

j (t) = u3(t)
G c-QED

13 14 15 16

ζq
k(t) = t d(G) ζ

|·|
k (t) = t d(G)

ζµ
k (t) = u2(t)

∂G connected
nondegenerate

ζλ−1

k (t) = u3(t)
G c-QED

Chart 3b

In Chart 3b for 1,2,5,6,9,10,13,14 the domain G is assumed to be bounded
and the functions uj are defined as follows:

u1(t) = (et − 1) d(G), u2(t) = γ

(
1

et − 1

)
, u3(t) =

1

cτ(e2t − 1)
.

Also, abbreviation d(G) = diam(G) is used.

1 2 3 4

Function ζα
q

does not exist
Function ζδ

q

does not exist
Function ζj

q

does not exist
Function ζk

q

does not exist

5 6 7 8

Function ζα
|·|

does not exist
Function ζδ

|·|
does not exist

Function ζj

|·|
does not exist

Function ζk
|·|

does not exist

9 10 11 12

ζα
µ (t) = v1(t)

∂G connected

ζδ
µ(t) = v1(t)

∂G connected
card(∂G) ≥ 2

ζj
µ(t) =

t

cn

∂G connected

ζk
µ(t) = ct

G uniform
∂G connected

13 14 15 16

ζα
λ−1(t) = v2(t) ζδ

λ−1(t) = v2(t)
card(∂G) ≥ 2

ζj

λ−1
(t) = v3(t)

ζk
λ−1(t) = c v3(t)

G uniform

Chart 3c

In Chart 3c the functions vj are defined as follows:

v1(t) = log

(
1 +

1

τ−1(t)

)
, v2(t) = log

(
1 + 2τ−1

(
1

t

))
and

v3(t) = log

(
1 + τ−1

(
1√
2t

))
.
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1 2 3 4

ζ
|·|
q (t) = ct

G bounded

Function ζµ
q

does not exist
Function ζλ−1

q

does not exist

5 6 7 8

ζq

|·|(t) = t
Function ζµ

|·|
does not exist

Function ζλ−1

|·|
does not exist

9 10 11 12

ζq
µ(t) =

d(G)

τ−1(t)
∂G connected

ζ|·|
µ (t) =

d(G)

τ−1(t)
∂G connected

ζλ−1

µ = w1(t)
G c-QED domain
∂G connected

13 14 15 16

ζq

λ−1
= w2(t) ζ

|·|
λ−1

= w2(t) ζµ

λ−1
= w3(t)

locally

Chart 3d

In Chart 3d for 2,9,10,13,14 the domain G is assumed to be bounded and the
functions wj are defined as follows:

w1(t) =
1

cτ(ebt − 1)
, w2(t) = τ−1(1/(

√
2t)) d(G) and w3(t) = γ

(
1

τ−1
(
1/(

√
2 t)
)
)

.

We use abbreviation d(G) = diam(G) as in Chart 3b.
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17. J. Väisälä: Quasisymmetric embeddings in Euclidean spaces. Trans. Amer. Math.

Soc., 264, No. 1 (1981), 191–204.

18. M. Vuorinen: Conformal invariants and quasiregular mappings. J. Anal. Math., 45

(1985), 69–115.

19. M. Vuorinen: Conformal geometry and quasiregular mappings. Lecture Notes in

Math., 1319, Springer, Berlin, 1988.

20. M. Vuorinen: Conformally invariant extremal problems and quasiconformal maps.

Quart. J. Math. Oxford Ser. (2), 43 (1992), 501–514.

21. M. Vuorinen: Metrics and quasiregular mappings. Proc. Int. Workshop on Quasi-

conformal Mappings and their Applications, IIT Madras, Dec 27, 2005 - Jan 1, 2006,

ed. by S. Ponnusamy, T. Sugawa, M. Vuorinen: Quasiconformal Mappings and their

Applications. Narosa Publishing House, 291–325, New Delhi, India, 2007.

22. V. Manojlovic, M. Vuorinen: On quasiconformal maps with identity boundary va-

lues. Transactions of the AMS (in press)

University of Belgrade, (Received September 11, 2008)
Faculty of Organizational Sciences, (Revised January 29, 2009)
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