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ON A FIRST-ORDER SEMIPOSITONE BOUNDARY

VALUE PROBLEM ON A TIME SCALE

Christopher S. Goodrich

We consider the existence of a positive solution to the first-order dynamic

equation y∆(t)+p(t)yσ(t) = λf (t, yσ(t)) , t ∈ (a, b)T, subject to the boundary

condition y(a) = y(b) +
∫ τ2

τ1
F (s, y(s)) ∆s for τ1, τ2 ∈ [a, b]T. In this setting,

we allow f to take negative values for some (t, y). Our results generalize some

recent results for this class of problems, and because we treat the problem

on a general time scale T we provide new results for this problem in the case

of differential, difference, and q-difference equations. We also provide some

discussion of the applicability of our results.

1. INTRODUCTION

In this paper we consider the existence of at least one positive solution to the
boundary value problem (BVP)

y∆(t) + p(t)yσ(t) = λf (t, yσ(t)) , t ∈ (a, b)T

y(a) = y(b) +

∫ τ2

τ1

F (s, y(s)) ∆s,
(1)

where T is a given time scale, λ > 0 is a parameter, the numbers τ1 and τ2 satisfy
τ1, τ2 ∈ [a, b]T with τ1 < τ2, and p and F are nonnegative functions on which
we shall later place some additional hypotheses. We also allow the nonlinearity
f to be negative for some values of t and y. Due to the presence of the integral
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in the boundary condition (BC) in (1) together with the fact that the function F

appearing in the integrand may be nonlinear, problem (1.1) is, in fact, an example
of a BVP with nonlinear, nonlocal BCs. Note that throughout this work we use
the standard notational convention ET := E ∩ T for some set E.

BVPs possessing either nonlinear and/or nonlocal BCs have seen a great
deal of study recently, spanning such areas as first- and second-order problems,
coupled systems of second-order problems, and higher-order problems – see, for
example, recent works by Franco et al. [10], Goodrich [11–17], Graef et al.
[18], Infante et al. [22–25], Kang et al. [26], Webb and Infante [31], Yang
[32, 33], and the references therein. In addition, the study of BVPs with specifically
integral boundary conditions has also seen much attention in recent years, and one
may consult [5, 19, 27] and the references therein for some recent examples. It
is also the case that the study of such BVPs on time scales has attracted a large
research following over the past decade or so, and it would be impossible to mention
all of the great many contributions to this emerging area. The papers [2, 11, 28, 30]
and the references therein provide a broad introduction, nonetheless, to this line
of research. In particular, the concept of analysis on a time scale was introduced
by Hilger [20]. Part of the interest in this approach is due to its effectiveness
in certain modeling situations as well as the fact that all manner of BVPs may
be studied simultaneously, certain of the most important examples being on the
time scales R (differential equations), Z (difference equations), and qZ (q-difference
equations). This approach then provides a unified treatment of several important
types of equations rather than a disjointed, piecemeal approach.

In the specific case of problem (1), our results here generalize a class of results
due to Anderson [2]. In particular, Anderson considered the multipoint problem

y∆(t) + p(t)yσ(t) = λf (t, yσ(t)) , t ∈ (a, b)T

y(a) = y(b) +

n−1
∑

i=2

γiy (ti) ,
(2)

where γi ∈ [0,+∞) for each i and a < t2 < · · · < tn−1 < b ∈ T
κ. In this case,

since f is allowed to take on negative values, Anderson considers the semipositone
problem. The semipositone problem has been well studied on both the time scale
R as well as more general time scales – see [3, 4, 7, 8, 19, 21] and the references
therein. Furthermore, as Anderson remarks in [2, Remark 3.4], problem (2) can
be generalized to

y∆(t) + p(t)yσ(t) = λf (t, yσ(t)) , t ∈ (a, b)T

y(a) = y(b) +

∫ τ2

τ1

γ(t)y(t) ∆t
(3)

ith only trivial modifications to the proofs of the theorems given in [2]. The mod-
ification in (3) allows for a linear nonlocal integral boundary condition, and the
linearity of the condition in (3) is precisely what makes the modification of An-
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derson’s results easy. If the boundary condition is permitted to be nonlinear, as
we allow, then the analysis becomes more complicated.

With this background in mind our contribution in this work is to extend
Anderson’s analysis of problem (2) to the nonlinear boundary condition setting,
as expressed in (1). Our result is obtained by assuming that F satisfies a sort-of
asymptotic relatedness condition, which is further explained in Sections 2 and 3. Its
use allows us to achieve our results whilst making few additional structural assump-
tions on the constituent functions. Indeed, in most all settings to our knowledge
it is assumed that F (t, y) = α(t)β(y), for all admissible t and y, for some suit-
ably restricted functions α and β, whereas here we make no such assumptions –
cf., [5, 9, 27, 29], for example. Moreover, this strategy is applicable to other prob-
lems with the general type of boundary condition studied here, and so, we believe
that the general techniques provided herein can be used to give generalizations of
other results in the literature.

2. PRELIMINARIES

In this section we collect some preliminary lemmas that we shall use in Section
3 to deduce the existence result that we present. In addition, we collect some basic
results from the theory of the calculus on time scales. For the most part we assume a
general familiarity with time scales, and we invite the reader to consult the excellent
textbook by Bohner and Peterson [6] for additional information on the theory
and application of time scales. Nonetheless, we do state a few basic results here
since their use is rather frequent in the sequel. We begin with some properties
of the time scales exponential function. For further discussion regarding the time
scales exponential function, please consult [6, Chapter 2].

Lemma 2.1. Suppose that p : T → R is regressive and rd-continuous. Then each

of the following holds for all t, s, r, a, b ∈ T :

1. e0(t, s) ≡ 1 and ep(t, t) ≡ 1;

2. e(σ(t), s) = (1 + µ(t)p(t))ep(t, s);

3.
1

ep(t, s)
= e⊖p(t, s);

4. ep(t, s)ep(s, r) = ep(t, r);

5. if p is nonnegative and a ≤ t ≤ b, then ep(a, t) ≤ ep(b, t); and

6. if p is nonnegative and a ≤ t ≤ b, then ep(a, t) ≤ ep(a, a) = 1.

Let us next state the cone in which we search for positive solutions of problem
(1). In particular, let B be the Banach space Crd ([a, b]T) when equipped with the
usual supremum norm ‖ · ‖. We then define the cone K ⊆ B by

K := {y ∈ B : y(t) ≥ ep(a, b)‖y‖ for each t ∈ [a, b]T} .
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We next collect the hypotheses that we impose on the various functions in
problem (1). We will discuss later the use of these conditions in some remarks.

H1: The function F : [a, b]T × [0,+∞) → [0,+∞) is continuous, and there
exists a continuous function H : [0,+∞) → [0,+∞) such that for each
ε > 0 given, there exists a number Mε ≥ 0 such that

|F (t, y)−H(y)| < εH(y),

for each t ∈ [a, b]T, whenever y ≥ Mε. In addition, the function H satisfies
the growth condition H(y) ≤ C1y, for some constant C1 ≥ 0 and all y ≥ 0.

H2: The function p : [a, b]T → (0,+∞) satisfies p ∈ Crd ([a, b]T) .

H3: Assume that
ep(b, a)− 1 > 0.

H4: Assume that the nonlinearity f : (a, b)T ×R → R is continuous such that
it is not identically zero on any subinterval of (a, b)T.

H5: Assume that there is [α1, α2]T ⊂ (a, b)T such that lim
y→+∞

f(t, y) = +∞

uniformly for t ∈ [α1, α2]T , with α1, α2 ∈ T satisfying α1 < α2.

H6: Assume that lim
y→+∞

f(t, y)

y
= 0 uniformly for t ∈ [a, b]T.

H7: Assume that there is a function u : (a, b)T → (0,+∞) with u ∈ Crd ((a, b)T)
such that

−u(t) ≤ f(t, y),

where we assume that
∫ b

a

u(t) ∆t < +∞.

Before proceeding let us make some remarks regarding certain of these conditions.

Remark 2.2. Observe that condition (H1) permits a broad variety of functions F. For
example, each of the following pairs of functions F, H are asymptotically related in the
sense of condition (H1):

F (t, y) := 3y + 2t2 + 5t
√
y and H(y) := 3y

F (t, y) := y + 2tet 3
√
y and H(y) := y

F (t, y) := ln (y + 1) + y and H(y) := y.

Now, as is the typical strategy for a problem such as (1), we will need to
study the auxiliary problem

w∆ + p(t)wσ = λu(t)

w(a) = w(b).
(4)

Regarding this auxiliary problem, we state the following lemma, which essentially
is the content of [2, Lemma 2.1].
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Lemma 2.3. Assume that each of conditions (H2)–(H3) and (H7) holds. Then the

unique solution of problem (4) is given by

(5) w(t) := λ

∫ b

a

G(t, s)u(s) ∆s,

where G : [a, b]T × [a, b]T → R is the Green’s function defined by

(6) G(t, s) :=











1

ep(b, a)− 1
ep(s, t), a ≤ t ≤ s ≤ b

(

1

ep(b, a)− 1
+ 1
)

ep(s, t), a ≤ s < t ≤ b.

Furthermore, it holds that G(t, s) > 0 for each admissible pair (t, s). Finally, the
function w as defined by (5) is a continuous function of t for each t ∈ [a, b]T.

Proof. The derivation of (5) is as in [2, Lemma 2.1]. Therefore, we do not restate
the proof here. Moreover, the strict positivity of G is obvious. It remains to prove
that w is a continuous function of t. We give a brief argument of the continuity of

t 7→ λ
∫ b

a
G(t, s)u(s) ∆s. To this end, fix t0 ∈ [a, b]T. We assume, for simplicity, that

t0 ∈ (a, b)T and that t0 is not an isolated point of T. (If these facts are not true,
then the following argument is very easily appropriately modified.) Now, recall
that u is L1 in the sense that

M0 :=

∫ b

a

u(s) ∆s < +∞

holds. Let ε > 0 be given. Consider the open set (t0 − δ, t0 + δ)
T

for δ > 0
sufficiently small and to be selected later. Let t ∈ (t0 − δ, t0 + δ)

T
and, for nota-

tional convenience in the sequel, define the functions G1 and G2 by G1(t, s) :=
1

ep(b, a)− 1
ep(s, t) and G2(t, s) :=

(

1

ep(b, a)− 1
+ 1
)

ep(s, t), where G1 is defined

when the pair (t, s) satisfies a ≤ t ≤ s ≤ b and G2 is defined when a ≤ s ≤ t ≤ b.

Notice that for δ < δ1, say,

∫ ρ(t0−δ)

a

|G(t, s)−G (t0, s)|u(s) ∆s =

∫ ρ(t0−δ)

a

|G2(t, s)−G2 (t0, s)|u(s) ∆s

≤
ε

3M0 + 1

∫ ρ(t0−δ)

a

u(s) ∆s <
ε

3
,

where we have used the continuity of t 7→ G2(t, ·). In a similar way, we deduce that
for δ < δ2, say,
∫ b

σ(t0+δ)

|G(t, s)−G (t0, s)|u(s) ∆s =

∫ b

σ(t0+δ)

|G1(t, s)−G1 (t0, s)|u(s) ∆s <
ε

3
.

Finally, we see that for δ < δ3, say,

∫ σ(t0+δ)

ρ(t0−δ)

|G(t, s) −G (t0, s)|u(s) ∆s ≤ M1

∫ σ(t0+δ)

ρ(t0−δ)

u(s) ∆s < M1
ε

3M1 + 1
<

ε

3
,
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where we put

M1 := max
(t,s)∈(t0−δ,t0+δ)

T
×[ρ(t0−δ),σ(t0+δ)]

T

|G(t, s)−G (t0, s)| < +∞,

and use the fact that since u is L1 on [a, b]T, it holds that
∫ σ(t0+δ)

ρ(t0−δ)
u(s) ∆s can be

made arbitrarily small by making δ sufficiently small; recall here that t0 is either
left- and/or right-dense, by assumption. Therefore, putting all of the preceding
estimates together, we deduce that for 0 < δ < min {δ1, δ2, δ3} , it holds, for 0 ≤
|t− t0| < δ, that

∣

∣

∣

∣

∣

∫ b

a

[G (t, s)−G (t0, s)]u(s) ∆s

∣

∣

∣

∣

∣

≤

∫ b

a

|G (t, s)−G (t0, s)|u(s) ∆s(7)

<
ε

3
+

ε

3
+

ε

3
= ε.

Consequently, it follows from (7) that the map

t 7→ λ

∫ b

a

G(t, s)u(s) ∆s

is continuous, and this completes the proof.

We next record a result regarding bounds on the Green’s function appearing
in (6) above. This result is similar to a result stated in Anderson – see [2, Lemma
2.2]. Unfortunately, the proof and result as stated in [2] contains a slight error.
Therefore, due to this, we give a proof in full of the following lemma, which corrects
the minor error in the proof of [2, Lemma 2.2].

Lemma 2.4. Assume that each of conditions (H2) and (H3) holds. Then the

Green’s function in (6) satisfies

(8) 0 < G(s, s) ≤ G(t, s) ≤ ep(b, a)G(s, s),

for each s, t ∈ [a, b]T.

Proof. First of all, note that by (6) it follows that

G(s, s) =
1

ep(b, a)− 1
,

which is well defined since condition (H4) is assumed. Fix s ∈ [a, b]T. If t ≤ s, then
(8) is obvious, for we calculate, just as in the proof of [2, Lemma 2.2],

1

ep(b, a)− 1
=

1

ep(b, a)− 1
ep(s, s) ≤

1

ep(b, a)− 1
ep(s, t) ≤

1

ep(b, a)− 1
ep(s, a).(9)

Rewriting (9) by means of (6), we estimate

0 < G(s, s) ≤ G(t, s) ≤ ep(s, a)G(s, s) ≤ ep(b, a)G(s, s).
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So, (8) holds in case t ≤ s.

On the other hand, in case t > s we reason as follows. First of all, we note
that we cannot merely repeat the proof given in [2, Lemma 2.2], for that argument
possesses a slight error. (In particular, the value of G(s, s) is recorded and used
incorrectly in the second part of the proof there.) Rather, we first note that

G(t, s) =
(

1 +
1

ep(b, a)− 1

)

ep(s, t) =
ep(b, a)ep(s, t)

ep(b, a)− 1
≥

1

ep(b, a)− 1
= G(s, s),(10)

where we use the fact that

ep(b, a)ep(s, t) ≥ ep(b, a)ep(a, b) = 1

so that
ep(b, a)ep(s, t) ≥ 1.

Hence, (10) implies that

(11) G(s, s) ≤ G(t, s) for t > s.

Next, put
d := ep(b, a)− 1 > 0.

We wish to prove that the inequality

G(t, s) =
(

1

d
+ 1
)

ep(s, t) =
(

d+ 1

d

)

ep(s, t) ≤ ep(b, a)G(s, s) = (d+ 1)G(s, s)(12)

holds. But observe that (12) is true if and only if

(13)
(

d+ 1

d

)

ep(s, t) ≤ (d+ 1)G(s, s)

if and only if

(14)
1

d
ep(s, t) ≤ G(s, s).

Since

(15) ep(s, t) ≤ dG(s, s) = 1,

we see that (12) holds if and only if ep(s, t) ≤ 1. But this latter inequality is clearly
true, for s < t. Therefore, because the steps in (12)–(15) are reversible, it follows
that (12) holds. That is to say,

(16) G(t, s) ≤ (d+ 1)G(s, s) = ep(b, a)G(s, s).

Putting (11) and (16) together, we conclude that

0 < G(s, s) ≤ G(t, s) ≤ ep(b, a)G(s, s)

holds in case t > s, which completes the proof.
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We next require some a priori bounds on the solution of problem (4). Such
bounds will become important in Section 3.

Lemma 2.5. Suppose that w is the unique solution of problem (4). Then w satisfies

(17) ep(a, b)‖w‖ ≤ w(t) ≤ λξ,

for each t ∈ [a, b]T, where ξ is defined here and in the sequel by

ξ :=

∫ b

a

ep(b, a)G(s, s)u(s) ∆s.

Proof. On the one hand we see that

(18) w(t) = λ

∫ b

a

G(t, s)u(s) ∆s ≤ λ

∫ b

a

ep(b, a)G(s, s)u(s) ∆s = λξ.

On the other hand,

w(t) ≥ λ

∫ b

a

G(s, s)u(s) ∆s = ep(a, b)

[

λ

∫ b

a

ep(b, a)G(s, s)u(s) ∆s

]

(19)

≥ ep(a, b)‖w‖.

Since each of (18) and (19) holds for each t ∈ [a, b]T, the conclusion of the lemma
follows.

We provide next a simple lemma that nonetheless will be important in the
existence proofs.

Lemma 2.6. Suppose that y ∈ K is given. Then it holds that

(20)

(

1−
λξ

ep(a, b)‖y‖

)

y(t) ≥

(

1−
λξ

λ(ξ + 1)

)

y(t),

for each t ∈ [a, b]T, whenever ‖y‖ ≥ e⊖p(a, b)λ(ξ + 1).

Proof. Suppose that ‖y‖ ≥ e⊖p(a, b)λ(ξ + 1). It then follows that

(21) λξ + λ ≤ ep(a, b)‖y‖.

From (21) we estimate

(22) λ2ξ2 + λ2ξ ≤ λξep(a, b)‖y‖.

Finally, (22) implies that

1−
λξ

ep(a, b)‖y‖
≥ 1−

λξ

λ(ξ + 1)
,

which, since y(t) ≥ 0, implies that
(

1−
λξ

ep(a, b)‖y‖

)

y(t) ≥

(

1−
λξ

λ(ξ + 1)

)

y(t),

for each t ∈ [a, b]T, which is the desired inequality.
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A simple consequence of the preceding lemma is the following.

Lemma 2.7. Let w be the solution of the auxiliary problem (4). Moreover, let

y ∈ K be a given function satisfying ‖y‖ ≥ e⊖p(a, b)λ(ξ + 1). Then it holds that

min
t∈[a,b]T

(y(t)− w(t)) ≥
ep(a, b)

ξ + 1
‖y‖.

Proof. Let w and y be as in the statement of the lemma. Note that since y ∈ K
it holds that

y(t) ≥ ep(a, b)‖y‖,

for each t ∈ [a, b]T, so that

−1 ≤ −
ep(a, b)‖y‖

y(t)
,

for each t ∈ [a, b]T. In particular, it holds that

(23) −
y(t)

ep(a, b)‖y‖
≤ −1,

for each t ∈ [a, b]T. Thus, using (17), (20), and (23) we estimate

y(t)− w(t) ≥ y(t)− λξ ≥ y(t)−
λξy(t)

ep(a, b)‖y‖
=

[

1−
λξ

ep(a, b)‖y‖

]

y(t)(24)

≥

[

1−
λξ

λ(ξ + 1)

]

y(t) ≥

[

1−
λξ

λ(ξ + 1)

]

min
t∈[a,b]T

y(t)

=
1

ξ + 1
min

t∈[a,b]T
y(t) ≥

ep(a, b)

ξ + 1
‖y‖,

which, since (24) holds for each t ∈ [a, b]T, completes the proof.

Finally, we construct the operator T : B → B that we shall use to find pos-
itive solutions of problem (1). First of all, as is a standard approach when seeking
positive solutions of semipositone BVPs, we consider a modified BVP, namely the
problem

y∆ + p(t)yσ = λ [f (t,max {yσ(t)− wσ(t), 0}) + u(t)]

y(a) = y(b) +

∫ τ2

τ1

F (s,max{y(s)− w(s), 0}) ∆s.
(25)

Note that in both (25) and the sequel the function w is the unique solution to the
auxiliary problem (4).

We next give the following lemma. Note that in the statement of this lemma
the quantity 1−ep(a, b) 6= 0 since ep(b, a) > 1 by condition (H3). Since the proof of
this lemma is obvious from [2, Lemma 2.1] and the fact that the function Ae⊖p(t, a)
is a general solution of y∆ + p(t)yσ = 0 for t ∈ (a, b)T, we omit the proof.
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Lemma 2.8. Suppose that each of (H2)–(H3) and (H7) holds. Let T : B → B be

the operator defined by

(Ty)(t) := λ

∫ b

a

G(t, s) [f (s,max {yσ(s)− wσ(s), 0}) + u(s)] ∆s

+
ep(a, t)

1− ep(a, b)

∫ τ2

τ1

F (s,max{y(s)− w(s), 0}) ∆s,

(26)

where G : [a, b]T × [a, b]T → R is the Green’s function defined in (6) above. If y0
is a fixed point of T, then y0 is a solution of the modified problem (25).

In the existence proof in Section 3, the strategy will be to show that T has
a fixed point y ∈ K and then to show that if we put x(t) := y(t)− w(t) and if ‖y‖
is bounded below by a sufficiently large positive number, then x(t) is a positive
solution of the original problem (1). To facilitate this, we state and prove two final
lemmas.

Lemma 2.9. Assume that each of (H2)–(H3) and (H7) holds, and let T be the

operator defined in (26). Then T (K) ⊆ K.

Proof. We argue very much as in [2, Lemma 3.1]. First note that

ep(a, b) ≤ ep(a, t) ≤ 1,

for each t ∈ [a, b]T. So, it follows that

(Ty)(t) = λ

∫ b

a

G(t, s) [f (s,max {yσ(s)− wσ(s), 0}) + u(s)] ∆s(27)

+
ep(a, t)

1− ep(a, b)

∫ τ2

τ1

F (s,max{y(s)− w(s), 0}) ∆s

≥ ep(a, b)

(

λ

∫ b

a

ep(b, a)G(s, s) [f (s,max {yσ(s)− wσ(s), 0}) + u(s)]∆s

+
1

1− ep(a, b)

∫ τ2

τ1

F (s,max{y(s)− w(s), 0}) ∆s

)

,

whilst

(Ty)(t) = λ

∫ b

a

G(t, s) [f (s,max {yσ(s)− wσ(s), 0}) + u(s)] ∆s(28)

+
ep(a, t)

1− ep(a, b)

∫ τ2

τ1

F (s,max{y(s)− w(s), 0}) ∆s

≤ λ

∫ b

a

ep(b, a)G(s, s) [f (s,max {yσ(s)− wσ(s), 0}) + u(s)] ∆s

+
1

1− ep(a, b)

∫ τ2

τ1

F (s,max{y(s)− w(s), 0}) ∆s.
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But combining (27) and (28) and using the fact that the right-hand side of (28) is
independent of t we deduce that

(Ty)(t) ≥ ep(a, b)‖Ty‖,

for each t ∈ [a, b]T, whence T (K) ⊆ K, as desired. �

Lemma 2.10. Suppose that y is a fixed point of the operator T defined in (26).
Define the function x : [a, b]T → R by

x(t) := y(t)− w(t),

where w is the solution of the auxiliary problem (4). If x(t) ≥ 0 on its domain,

then x is a positive solution of problem (1).

Proof. Suppose as in the statement of the lemma that x(t) ≥ 0, for each t ∈ [a, b]T.
Obviously, x is a nonnegative function. Furthermore, it holds that

x∆ + p(t)xσ = y∆ − w∆ + p(t)yσ − p(t)wσ

= λf (t, yσ(t)− wσ(t)) + λu(t)− w∆ − p(t)wσ

= λf (t, xσ(t)) + λu(t)− λu(t) = λf (t, xσ(t)) .

Finally, we compute

x(a) − x(b) = y(a)− y(b)− w(a) + w(b)

=

∫ τ2

τ1

F (s, y(s)− w(s)) ∆s− 0 =

∫ τ2

τ1

F (s, x(s)) ∆s.

Thus, x is a positive solution of problem (1), as desired.

We conclude this section with the statement of Krasnosel’skĭı’s fixed point
theorem – see [1]. We shall use this result to prove the existence theorem of Section
3.

Lemma 2.11. Let B be a Banach space and let K ⊆ B be a cone. Assume that

Ω1 and Ω2 are bounded, open sets contained in B such that 0 ∈ Ω1 and Ω1 ⊆ Ω2.

Assume, further, that T : K∩
(

Ω2 \ Ω1

)

→ K is a completely continuous operator.

If either

1. ‖Ty‖ ≤ ‖y‖ for y ∈ K ∩ ∂Ω1 and ‖Ty‖ ≥ ‖y‖ for y ∈ K ∩ ∂Ω2; or

2. ‖Ty‖ ≥ ‖y‖ for y ∈ K ∩ ∂Ω1 and ‖Ty‖ ≤ ‖y‖ for y ∈ K ∩ ∂Ω2;

then T has at least one fixed point in K ∩
(

Ω2 \ Ω1

)

.
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3. MAIN RESULT AND CONCLUDING REMARKS

We now present our existence result for problem (1). Following the state-
ment and proof of the result, we conclude with some final remarks regarding its
application. Note that throughout we use the following notation.

Notation 3.12. Given R > 0, we denote by ΩR ⊆ B the open set

ΩR := {y ∈ B : ‖y‖ < R} .

Theorem 3.13. Assume that each of conditions (H1)–(H7) holds. Furthermore,

assume that

(29)
C1

1− ep(a, b)

∫ τ2

τ1

1 ∆s < 1.

Then there exist λ2 > λ1 > 0 such that for each λ ∈ [λ1, λ2] problem (1) has at

least one positive solution.

Proof. First of all, K is invariant under T due to Lemma 2.9. In addition, in light
of Lemma 2.3 and the continuity of F, it is standard to show that T is completely
continuous, and so, we omit the details. Therefore, it remains to show that T is
alternatively a cone expansion and compression on appropriate sets.

To this end, since
(ξ + 1)e⊖p(a, b)
∫ α2

α1

G(s, s) ∆s
< +∞, select K0 ∈ (0,+∞) such that

(ξ + 1)e⊖p(a, b)
∫ α2

α1

G(s, s)K0 ∆s
< 1 holds. Furthermore, notice that by condition (H5), it follows

that there exists a number r1 > 0 sufficiently large such that

(30) f(t, y) ≥ K0

uniformly for t ∈ [α1, α2]T, whenever y ∈ [r1,+∞) . In addition, with K0 chosen as
above, select λ > 0 such that

(31) λ ∈

[

(ξ + 1)r1

ep(a, b)
∫ α2

α1

G(s, s)K0 ∆s
, r1

]

.

Let us interrupt to note that the set indicated in (31) is nonempty. In particular,
this follows from the observation that since

(ξ + 1)e⊖p(a, b)
∫ α2

α1

G(s, s)K0 ∆s
< 1,

by hypothesis, it follows at once that

(ξ + 1)r1

ep(a, b)
∫ α2

α1

G(s, s)K0 ∆s
< r1.
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Thus
[

(ξ + 1)r1

ep(a, b)
∫ α2

α1

G(s, s)K0 ∆s
, r1

]

6= ∅.

Now let
y ∈ K ∩ ∂Ω ξ+1

ep(a,b)
r1

be arbitrary but fixed. Then since

λ ≤ r1 =
r1(ξ + 1)

ep(a, b)(ξ + 1)e⊖p(a, b)
=

‖y‖
(ξ + 1)e⊖p(a, b)

,

it follows that

(32) ‖y‖ ≥ λ(ξ + 1)e⊖p(a, b).

In addition, since

λ ≥
(ξ + 1)r1

ep(a, b)
∫ α2

α1

G(s, s)K0 ∆s
,

it likewise follows for such y that

(33) λ ≥
‖y‖

∫ α2

α1

G(s, s)K0 ∆s
,

whence

λ

∫ α2

α1

G(s, s)K0 ∆s ≥ ‖y‖.

Notice, moreover, that due to (32) and Lemma 2.7, it holds that

(34) yσ(t)− wσ(t) ≥ 0,

for each t ∈ [a, ρ(b)]T, whence

max {yσ(t)− wσ(t), 0} = (yσ − wσ) (t),

for each t ∈ [a, ρ(b)]T. In addition, Lemma 2.7 implies that

(35) min
t∈[a,ρ(b)]T

(yσ(t)− wσ(t)) ≥
ep(a, b)

ξ + 1
‖y‖.

Consequently, it follows from both (30) and (35) that if

‖y‖ =
ξ + 1

ep(a, b)
r1,

then
f (t, yσ(t)− wσ(t)) ≥ K0,
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for each t ∈ [a, ρ(b)]T and thus for each t ∈ [α1, α2]T . Putting all of this together

and using the fact that F (x, y) ≥ 0 on its domain, the fact that
ep(a, t)

1− ep(a, b)
≥ 0,

and the fact that u(t) ≥ 0 on its domain, for y ∈ K ∩ ∂Ω ξ+1
ep(a,b)

r1
we estimate

(Ty)(t) = λ

∫ b

a

G(t, s) [f (s,max {yσ(s)− wσ(s), 0}) + u(s)] ∆s

+
ep(a, t)

1− ep(a, b)

∫ τ2

τ1

F (s,max{y(s)− w(s), 0}) ∆s

≥ λ

∫ α2

α1

G(t, s) [f (s,max {yσ(s)− wσ(s), 0}) + u(s)] ∆s

≥ λ

∫ α2

α1

G(s, s)K0 ∆s ≥ ‖y‖,

for each t ∈ [a, b]T, where to obtain the final inequality we have used estimate (33).
Hence, we conclude that ‖Ty‖ ≥ ‖y‖.

Conversely, let λ as selected in (31) be henceforth fixed. Moreover, we assume
throughout this part of the proof that

‖y‖ ≥
ξ + 1

ep(a, b)
r1

so that each of (34) and (35) holds. By hypothesis we have that

C1

1− ep(a, b)

∫ τ2

τ1

1 ∆s < 1.

Therefore, select ε1 > 0 sufficiently small such that
[

C1

1− ep(a, b)

∫ τ2

τ1

1 ∆s

]

(1 + ε1) < 1.

In particular, for this choice of ε1, it holds by condition (H2) that there exists
Mε1 > 0 such that for each s ∈ [a, b]T

|F (s, y(s)− w(s)) −H(y(s)− w(s))| < ε1H(y(s)− w(s))(36)

≤ ε1C1 [y(s)− w(s)] ≤ ε1C1‖y‖

whenever
y(s)− w(s) ≥ Mε1 .

But recalling estimate (35), it follows that (36) holds provided that

‖y‖ ≥
ξ + 1

ep(a, b)
Mε1 .

Define θ0 by

θ0 :=

[

C1

1− ep(a, b)

∫ τ2

τ1

1 ∆s

]

(1 + ε1) ,



On a first-order semipositone boundary value problem on a time scale 283

and select ε2 > 0 such that

θ0 + ε2 < 1.

By then selecting η1 > 0 such that

[

λ

∫ b

a

ep(b, a)G(s, s) ∆s

]

η1 < ε2,

it follows from condition (H6) that we may find r2 > 0 sufficiently large such that

(37) f (t, (yσ − wσ) (t)) ≤ η1 (y
σ − wσ) (t) ≤ η1y

σ(t) ≤ η1‖y‖

whenever (yσ − wσ) (t) > r2, for each t ∈ [a, ρ(b)]T. But, once again, in light of
estimate (35), estimate (37) is seen to hold provided that

‖y‖ ≥
ξ + 1

ep(a, b)
r2.

Finally, select ε3 > 0 sufficiently small such that

θ0 + ε2 + ε3 < 1.

Thus, if we also require that

‖y‖ >
1

ε3
λ

∫ b

a

ep(b, a)G(s, s)u(s) ∆s,

then

λ

∫ b

a

ep(b, a)G(s, s)u(s) ∆s < ε3‖y‖.

Now define the number r2 by

r2 := max

{

2(ξ + 1)

ep(a, b)
r1,

ξ + 1

ep(a, b)
Mε1 ,

ξ + 1

ep(a, b)
r2,

1

ε3
λ

∫ b

a

ep(b, a)G(s, s)u(s) ∆s

}

and let

y ∈ K ∩ ∂Ωr2 .
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Then putting all of the preceding estimates together, for each t ∈ [a, b]T we estimate

(Ty)(t) ≤ λ

∫ b

a

ep(b, a)G(s, s) [f (s, yσ(s)− wσ(s)) + u(s)] ∆s

+
ep(a, t)

1− ep(a, b)

∫ τ2

τ1

|F (s, y(s)− w(s)) −H(y(s)− w(s))| + |H(y(s)− w(s))| ∆s

≤ η1

[

λ

∫ b

a

ep(b, a)G(s, s) ∆s

]

‖y‖

+ (1 + ε1)C1 max
t∈[a,b]T

[

ep(a, t)

1− ep(a, b)

∫ τ2

τ1

1 ∆s

]

‖y‖+ λ

∫ b

a

ep(b, a)G(s, s)u(s) ∆s

≤ η1

[

λ

∫ b

a

ep(b, a)G(s, s) ∆s

]

‖y‖

+ (1 + ε1)

[

C1

1− ep(a, b)

∫ τ2

τ1

1 ∆s

]

‖y‖+ λ

∫ b

a

ep(b, a)G(s, s)u(s) ∆s

≤ (θ0 + ε2 + ε3) ‖y‖ < ‖y‖,

whence ‖Ty‖ ≤ ‖y‖, for each y ∈ K ∩ ∂Ωr2 .

Consequently, by invoking Lemma 2.11 we find that there exists

y0 ∈ K ∩

(

Ωr2 \ Ω ξ+1
ep(a,b)

r1

)

such that Ty0 = y0, with y0 a positive solution of the modified problem (25). Now
define x : [a, b]T → R by x(t) := y0(t)− w(t). Since

‖y0‖ ≥
ξ + 1

ep(a, b)
r1 ≥ λ(ξ + 1)e⊖p(a, b),

it follows that (y0 − w) (t) ≥ 0, for each t ∈ [a, b]T. Thus, invoking Lemma 2.10, we
conclude that the function x is a positive solution of the original problem (1). And
this completes the proof. �

Remark 3.14. Let T = R, C1 = 3, τ1 =
2

5
, τ2 =

1

2
, a = 0, b = 1, and p(t) ≡ 1. In this

case, problem (1) becomes

y′(t) + y(t) = λf (t, y(t)) , t ∈ (0, 1)

y(0) = y(1) +

∫ 1/2

2/5

F (s, y(s)) ds,

for some suitably chosen functions f and F. Note that condition (29) in Theorem 3.13 is
3

1− e−1

∫ 1/2

2/5
1 ds =

3

10 (1− e−1)
≈ 0.475 < 1. So, this condition is satisfied in this case.
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Remark 3.15. Let T = Z, C1 =
1

5
, τ1 = 2, τ2 = 5, a = 0, b = 10, and p(t) ≡ 1. In this

case, problem (1) becomes

∆y(t) + y(t+ 1) = λf (t, y(t+ 1)) , t ∈ (0, 10)Z

y(0) = y(10) +

∫ 5

2

F (s, y(s)) ∆s = y(10) +

4∑
s=2

F (s, y(s))
(38)

for some suitably chosen functions f and F ; note that in (38) we use the fact that on the
time scale Z it holds that ∫ b

a

f(s) ∆s =
b−1∑
s=a

f(s).

Recall that ep (t, t0) = (1 + p(t))t−t0 on this time scale – see [6]. Consequently, condition

(29) in Theorem 3.13 is
1/5

1− 2−10

4∑
s=2

1 =
3

5 (1− 2−10)
< 1, and so, this condition is

satisfied in this case, too.

Remark 3.16. We note that it is possible to provide an existence result very similar to
that presented in [2, Theorem 3.3] – in particular, a result in which we obtain a set (0, λ0)
such that for each λ ∈ (0, λ0) problem (1) has at least one positive solution. This can be

accomplished both by replacing condition (H1) with the condition that lim
y→0+

F (t, y)

y
= 0,

uniformly for t ∈ [a, b]T and by replacing conditions (H5)–(H6) with the condition that

lim
y→+∞

f(t, y)

y
= +∞, uniformly on some set [α1, α2]T . Since the proof of this result is

rather similar to that of [2, Theorem 3.3], we have elected to omit it here.
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