Applicable Analysis and Discrete Mathematics

available online at http://pefmath.etf.rs

APPL. ANAL. DISCRETE MATH. 9 (2015), 357-366.

 ${\rm doi:} 10.2298/{\rm AADM150930020M}$

GRAPHS WITH NO INDUCED WHEEL AND NO INDUCED ANTIWHEEL

Frédéric Maffray

A wheel is a graph that consists of a chordless cycle of length at least 4 plus a vertex with at least three neighbors on the cycle. An antiwheel is the complementary graph of a wheel. It was shown recently that detecting induced wheels is an NP-complete problem. In contrast, it is shown here that graphs that contain no wheel and no antiwheel have a very simple structure and consequently can be recognized in polynomial time.

1. INTRODUCTION

Four families of graphs have repeatedly played important roles in structural graph theory recently. They are called *Truemper configurations* as they were first used by TRUEMPER in several theorems [9]. These configurations are called *pyramids*, *prisms*, *thetas* and *wheels*. We will not recall all the definitions, as we do not need all of them here; see Vušković [10] for an extensive survey on Truemper configurations and their important role in graph theory. It is interesting to know the complexity of deciding whether a graph contains (as an induced subgraph) a Truemper configuration of a certain type. The problem is polynomial for pyramids [1]; indeed it is one of the main steps in the polynomial-time recognition algorithm for perfect graphs [1]. It is also polynomial for thetas [2]. On the other hand, the problem is NP-complete prisms [7].

Here we will deal with the fourth Truemper configuration, the wheel. A wheel is a graph that consists of a chordless cycle of length at least 4 plus a vertex that has at least three neighbors on the cycle. An antiwheel is the complementary graph of a wheel. DIOT, TAVENAS and TROTIGNON [3] proved that it is also NP-complete

2010 Mathematics Subject Classification. 05C75, 05C85, 05C17. Keywords and Phrases. Wheel, Detection, Truemper configurations.

to decide if a graph contains a wheel as an induced subgraph. They mention the open question of characterizing the graphs that contain no wheel and no antiwheel. We solve this question here by giving a complete description of the structure of these graphs, from which it follows that they can be recognized in linear time.

We use the standard graph-theoretic terminology. We let K_n , P_n and C_n respectively denote the complete graph, path and cycle on n vertices. The *length* of a path or cycle is its number of edges. For a given graph F, we let nF denote the graph with n components, all isomorphic to F. Given a family F of graphs, a graph F is F-free if no induced subgraph of F is isomorphic to any member of F; when F has only one element F we say that F is F-free. Whenever we say that a graph F contains a graph F, we mean that some induced subgraph of F is isomorphic to F.

In a graph G, a k-hole is an induced cycle on k vertices. A hole is any k-hole with $k \geq 4$. A k-antihole is the complementary graph of a k-hole. The neighborhood of a vertex x is denoted by $N_G(x)$ or N(x) if there is no ambiguity. For any set $A \subseteq V(G)$ and vertex $x \in V(G)$, we let $N_A(x)$ denote the set $N_G(x) \cap A$. We say that a vertex x is complete to a set $S \subseteq V(G) \setminus \{x\}$ if x is adjacent to every vertex in S, and that x is anticomplete to S if x has no neighbor in S. Given disjoint sets $S, T \subseteq V(G)$, we say that S is complete to S if every vertex in S is adjacent to every vertex in S, and that S is anticomplete to S if no vertex in S has any neighbor in S. We let S denote the complementary graph of S.

We define three classes of graphs \mathcal{A} , \mathcal{B} and \mathcal{C} as follows (see Figure 1).

- Class A: A graph G is in class A if V(G) can be partitioned into two non-empty sets X and $\{a, b, c, d, e\}$ such that:
 - $-\{a,b,c,d\}$ induces a hole with edges ab,bc,cd,da;
 - X induces a clique and is complete to $\{c,d\}$ and anticomplete to $\{a,b\}$;
 - e is complete to X, anticomplete to $\{a,b\}$, and has a non-neighbor in $\{c,d\}$.
- Class \mathcal{B} : A graph G is in class \mathcal{B} if V(G) can be partitioned into four stable sets X,Y,Z,W, with two special vertices $x\in X$ and $y\in Y$, such that:
 - $-|X| \ge 2$, $|Y| \ge 2$, and $X \cup Y$ induces a connected P_5 -free bipartite graph;
 - -x is complete to Y, and y is complete to X;
 - -Z is complete to $\{x,y\}$ and anticomplete to $(X \cup Y) \setminus \{x,y\}$;
 - -W is anticomplete to $X \cup Y \cup Z$ (so all vertices of W are isolated in G).

The structure of P_5 -free bipartite graphs is recalled in Section 2.

• Class C: A graph G is in class C if V(G) can be partitioned in two cliques X and Y of size at least 2 such that the edges between X and Y form a matching of size 2.

A split graph [4] is any graph whose vertex-set can be partitioned into a clique and a stable set. Note that the complementary graph of a split graph is a split graph.

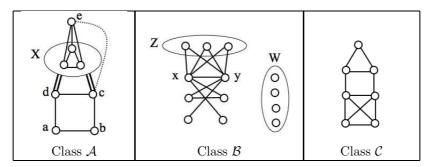


Figure 1.

Our main result is the following. Its proof is given in Section 3.

Theorem 1. The following three properties are equivalent:

- (a) G is (wheel, antiwheel)-free.
- (b) G contains no wheel and no antiwheel on at most seven vertices.
- (c) G or \overline{G} is either a 5-hole, a 6-hole, a split graph, or a member of $A \cup B \cup C$.

2. P_5 -FREE BIPARTITE GRAPHS AND SPLIT GRAPHS

We recall the following simple characterization of P_5 -free bipartite graphs.

Theorem 2 (See [5] or [8, Section 2.4]). Let H be a connected bipartite graph, where V(H) is partitioned into stable sets X and Y. The following conditions are equivalent:

- H is P_5 -free;
- H is $2K_2$ -free;
- The neighborhoods of any two vertices in X are comparable by inclusion (equivalently, the same holds in Y);
- There is an integer h > 0 such that X can be partitioned into non-empty sets X_1, \ldots, X_h and Y can be partitioned into non-empty sets Y_1, \ldots, Y_h such that for all $i, j \in \{1, \ldots, h\}$ a vertex in X_i is adjacent to a vertex in Y_j if and only if $i + j \le h + 1$.

Using the properties described in this theorem one can also decide in linear time whether a bipartite graph is P_5 -free [5, 8].

It follows from Theorem 2 that when H is a P_5 -free connected bipartite graph, with the same notation as in the theorem, then X contains a vertex that is complete to Y (every vertex from X_1 has this property), and similarly Y contains a vertex that is complete to X (every vertex from Y_1 has this property).

FÖLDES and HAMMER [4] gave the following characterization of split graphs.

Theorem 3 ([4]). A graph is split if and only if it is $\{2K_2, C_4, C_5\}$ -free.

3. THE PROOF

Proof of Theorem 1. Let F_1 (resp. F_2) be the wheel that consists of a 4-hole plus a vertex adjacent to three (resp. four) vertices of the hole.

Clearly, property (a) of Theorem 1 implies property (b).

Let us prove that (c) implies (a). Assume that G satisfies property (c). If G or \overline{G} is a 5-hole or a 6-hole, then clearly it does not contain a wheel or an antiwheel. If G is a split graph (and so \overline{G} too is a split graph), it contains no hole and consequently no wheel (and also no antiwheel). We may now assume that G or \overline{G} is in $A \cup B \cup C$. Actually we may assume that G is in $A \cup B \cup C$ since being (wheel, antiwheel)-free is a self-complementary property.

First we examine the presence of a wheel. If $G \in \mathcal{A} \cup \mathcal{C}$, it contains only one hole H, of length 4. If $G \in \mathcal{B}$ it may contain many holes, but they all have four vertices, more precisely two vertices from X and two from Y. In all cases, it is easy to see that whenever H is a hole in G, every vertex of $G \setminus H$ has at most two neighbors in H. So no hole of G extends to a wheel, and so G is wheel-free.

Now we examine the presence of an antiwheel. Note that G contains no 5-antihole (because in that case G is a 5-antihole, which we have already examined), and that in any k-antihole with $k \geq 6$ every vertex x has degree at least 3 and N(x) is not a clique.

If $G \in \mathcal{A}$, it is easy to see that every antihole H of G has length 4 and consists of the vertices a and b plus two vertices u, v from $X \cup \{e\}$; moreover, c and d have three neighbors in H, while any vertex in $V(G) \setminus (V(H) \cup \{c, d\})$ is adjacent to both u, v; it follows that H cannot extend to an antiwheel $(\overline{F}_1 \text{ or } \overline{F}_2)$ in G.

If $G \in \mathcal{B}$, we claim that G contains no antihole at all. Indeed, G contains no 4-antihole $(=2K_2)$, by Theorem 2 and because there is no $2K_2$ containing a vertex from Z. Moreover, if H is a k-antihole in G with $k \geq 6$, then: clearly H contains no vertex from W; and H contains no vertex $z \in Z$ (because $N_G(z)$ is a clique); and so $V(H) \subseteq X \cup Y$, which is impossible because H must contain triangles. Thus the claim that G contains no antihole is established, and consequently G contains no antiwheel.

Finally, if $G \in \mathcal{C}$, it is easy to see that every antihole H in G has length 4 and that there is no vertex u in $V(G) \setminus V(H)$ such that $V(H) \cup \{u\}$ induces an antihole (\overline{F}_1) or \overline{F}_2 , so G contains no antiwheel.

Finally let us prove that (b) implies (c). Let G be a graph that contains no wheel and no antiwheel on at most seven vertices.

First, suppose that G contains a 5-hole C. Note that V(C) also induces a

5-hole in \overline{G} . If there is any vertex x in $V(G) \setminus V(C)$, then x has either at least three neighbors in C or three non-neighbors in C, and so $V(C) \cup \{x\}$ induces a wheel in G or in \overline{G} . Thus no such x exists, and G is a 5-hole.

Now suppose that G contains a 6-hole C, with vertices c_1, \ldots, c_6 and edges $c_i c_{i+1}$, with subscripts modulo 6. Pick any x in $V(G) \setminus V(C)$. Vertex x has at most two neighbors in C, for otherwise $V(C) \cup \{x\}$ induces a wheel in G. It follows that, up to symmetry, $N(x) \cap V(C)$ is equal either to $\{c_1\}$, $\{c_1, c_2\}$, $\{c_1, c_5\}$, $\{c_1, c_4\}$ or \emptyset . In the first three cases $\{x, c_1, c_3, c_4, c_6\}$ induces an \overline{F}_1 ; in the last two cases $\{x, c_2, c_3, c_5, c_6\}$ induces an \overline{F}_2 . Thus no such x exists, and G is a 6-hole.

If G contains a 6-antihole, then the same argument as in the preceding paragraph, applied to \overline{G} , implies that G is a 6-antihole.

We assume henceforth that G contains no 5-hole (and consequently no 5-antihole), no 6-hole and no 6-antihole. We may also assume that G is not a split graph, for otherwise the theorem holds. It follows from Theorem 3 that G contains either a $2K_2$, a C_4 or a C_5 . Since G contains no C_5 , and up to self-complementation, we may assume that G contains a $2K_2$. Let A, B be two disjoint subsets of V(G) such that both A and B are cliques of size at least 2 and A is anticomplete to B. There exists such a pair since we can let A and B be the two cliques of size 2 of a $2K_2$. Choose A and B such that $|A \cup B|$ is maximized. Let $R = V(G) \setminus (A \cup B)$. We claim that:

For every vertex x in R, either:

- x is complete to A and has a neighbor in B, or
 - x is complete to B and has a neighbor in A, or
 - \bullet x has exactly one non-neighbor in A and exactly one non-neighbor in B.

Suppose that the third item does not hold. So, up to symmetry, x has two non-neighbors a, a' in A. If x has a non-neighbor b in B, then, picking any $b' \in B \setminus b$, we see that $\{x, a, a', b, b'\}$ induces an \overline{F}_1 or \overline{F}_2 (depending on the pair x, b'), a contradiction. So x is complete to B. If x has no neighbor in A, then the pair $A, B \cup \{x\}$ contradicts the choice of A, B. So x has a neighbor in A, and the first item in (1) holds. This proves (1).

Let $A = \{a_1, \ldots, a_p\}$, with $p \ge 2$, and let $B = \{b_1, \ldots, b_q\}$, with $q \ge 2$. Define the following subsets of R:

- $R_0 = \{x \in R \mid x \text{ is complete to } A \text{ or to } B\}.$
- $R_{i,j} = \{x \in R \mid x \text{ is complete to } (A \cup B) \setminus \{a_i, b_j\} \text{ and anticomplete to } \{a_i, b_j\} \},$ for each $(i, j) \in \{1, \dots, p\} \times \{1, \dots, q\}.$

Clearly these sets are pairwise disjoint, and by (1) we have $R = R_0 \cup \bigcup_{i,j} R_{i,j}$.

Say that two vertices x and y of R are A-comparable if one of the two sets $N_A(x)$ and $N_A(y)$ contains the other; in the opposite case, say that x and y are A-incomparable. Define the same with respect to B.

Suppose that there are two A-incomparable vertices x and y in R. Up to relabeling, a_1 is adjacent to x and not to y and a_2 is adjacent to y and not to x. Since each of x and y has a neighbor in B, there is a path P between x and y with interior in B, and we may assume that P has no chord except possibly xy (if x, y)

are adjacent). Since B is a clique, the length ℓ of P is equal to 2 or 3. We may assume that if $\ell = 2$ then $P = x - b_1 - y$ while if $\ell = 3$ then $P = x - b_1 - b_2 - y$. Vertices x and y are adjacent, for otherwise $V(P) \cup \{a_1, a_2\}$ induces a 5-hole or a 6-hole.

(2)
$$x$$
 and y are anticomplete to $A \setminus \{a_1, a_2\}$.

For suppose up to symmetry that x has a neighbor a in $A \setminus \{a_1, a_2\}$. Then $\{a_1, a_2, x, y, a\}$ induces an F_1 or F_2 . Thus (2) holds.

(3) No vertex of
$$R$$
 is complete to $\{a_1, a_2\}$.

Suppose that some z in R is complete to $\{a_1,a_2\}$. So $z \notin \{x,y\}$. Then z is anticomplete to $\{x,y\}$, for otherwise $\{x,y,z,a_1,a_2\}$ induces an F_1 or F_2 . Then z is not adjacent to b_1 , for otherwise either $\{x,y,z,b_1,a_1,a_2\}$ induces a 6-antihole (if $\ell=2$) or $\{x,y,a_2,z,b_1\}$ induces a 5-hole (if $\ell=3$). By (1) z has a neighbor b in B; so $b \neq b_1$. Then x is adjacent to b, for otherwise $\{x,a_1,z,b,b_1\}$ induces a 5-hole, and y is adjacent to b, for otherwise $\{x,y,a_2,z,b\}$ induces a 5-hole; but then $\{x,y,z,b,a_1,a_2\}$ induces a 6-antihole. Thus (3) holds.

Suppose that we can choose P with $\ell=3$. Then $\{a_1,a_2\}$ and $\{b_1,b_2\}$ play symmetric roles. By (1), (3) and its analogue for $\{b_1,b_2\}$, we have $R=R_{1,1}\cup R_{1,2}\cup R_{2,1}\cup R_{2,2}$. Note that $x\in R_{2,2}$ and $y\in R_{1,1}$. If $p\geq 3$, then $\{x,y,a_1,a_2,a_3\}$ induces an F_2 . So p=2, and similarly q=2. If there is any vertex u in $R_{1,2}$, then u is adjacent to x, for otherwise $\{u,b_1,x,a_1,a_2\}$ induces a 5-hole, and similarly u is adjacent to y; but then $\{u,x,y,a_1,a_2\}$ induces an F_1 . So $R_{1,2}=\emptyset$, and similarly $R_{2,1}=\emptyset$. Therefore $V(G)=\{a_1,a_2,b_1,b_2\}\cup R_{1,1}\cup R_{2,2}$. If some vertex u in $R_{1,1}$ is not adjacent to some vertex v in $R_{2,2}$, then $\{u,a_1,a_2,v,b_2,b_1\}$ induces a 6-hole. So $R_{1,1}$ is complete to $R_{2,2}$. If $R_{1,1}$ contains two adjacent vertices u,v, then $\{u,v,x,a_1,a_2\}$ induces an F_1 . So $R_{1,1}$ is a stable set, and similarly $R_{2,2}$ is a stable set. Thus \overline{G} is in class C (where $R_{1,1}\cup\{a_1,b_1\}$ and $R_{2,2}\cup\{a_2,b_2\}$ are the two cliques that form a partition of $V(\overline{G})$ as in the definition of class C).

Therefore we may assume that $\ell=2$ and that there is no path P as above with $\ell=3$, which means that x and y are B-comparable. We claim that:

$$(4) R = \{x, y\}.$$

For suppose that there is a vertex z in $R \setminus \{x, y\}$. Suppose that z is anticomplete to $\{a_1, a_2\}$. By (1), z is complete to B and has a neighbor a in $A \setminus \{a_1, a_2\}$. By (2), a is anticomplete to $\{x, y\}$. Then z is adjacent to x, for otherwise $\{x, a_1, a, z, b_1\}$ induces a 5-hole; and similarly z is adjacent to y. But then $\{x, y, z, a_1, a_2, a\}$ induces a 6-antihole. Therefore, by (3), z has exactly one neighbor in $\{a_1, a_2\}$. Up to symmetry, assume that z is adjacent to a_1 and not to a_2 . If z is adjacent to b_1 , then it is also adjacent to y, for otherwise $\{z, a_1, a_2, y, b_1\}$ induces a 5-hole, and to x, for otherwise $\{z, a_1, x, b_1, y\}$ induces an F_1 ; but then $\{x, y, a_1, a_2, z\}$ induces an F_1 . So z is not adjacent to b_1 , and so $z \in R_{2,1}$. Then z is adjacent to y, for otherwise either $\{z, a_1, a_2, y, b_1, b_2\}$ or $\{z, a_1, a_2, y, b_2\}$ induces a hole (depending on the adjacency between y and b_2), and z is not adjacent to x for otherwise $\{x, y, a_1, a_2, z\}$ induces

an F_1 . Then b_2 is adjacent to x, for otherwise $\{x, b_1, b_2, z, a_1\}$ induces a 5-hole, and to y, for otherwise $\{y, b_1, b_2, z, x\}$ induces an F_1 . But then $\{a_1, z, b_2, x, y\}$ induces an F_1 . Thus (4) holds.

If $p \geq 3$, then, by (2) and (1), x and y are anticomplete to $A \setminus \{a_1, a_2\}$ and complete to B. It follows that G is in class C (where the two cliques A and $B \cup \{x, y\}$ form a partition of V(G) as in the definition of class C). Now suppose that p = 2. Since x and y are B-comparable, we may assume, up to symmetry, that $N_B(x) \subseteq N_B(y)$. If B contains two vertices b, b' that are not adjacent to x, then $\{x, a_1, a_2, b, b'\}$ induces an $\overline{F_1}$. So B has at most one non-neighbor of x. If there is such a vertex b, then G is in class A (where $\{a_1, a_2, x, y\}$ induces a 4-hole, the set $B \setminus \{b\}$ plays the role of "X" and b plays the role of "e" in the definition of class A). If there is no such vertex, then G is in class C (where V(G) is partitioned into the two cliques A and $B \cup \{x, y\}$).

Therefore we may assume that any two vertices in R are A-comparable and B-comparable. By (1), every vertex of R has a neighbor in A, so some vertex of A is complete to R. Likewise, some vertex of B is complete to R. So we may assume that a_1 and b_1 are complete to R. If R is neither a clique nor a stable set, there are three vertices x, y, z in R that induce a subgraph with one or two edges, and then $\{a_1, b_1, x, y, z\}$ induces an F_1 or F_2 , a contradiction. Therefore R is either a clique or a stable set.

Suppose that R is not a clique. So R is a stable set of size at least 2. For $\varepsilon \in \{0,1\}$, let

```
A_{\varepsilon} = \{u \in A \setminus \{a_1\} \mid u \text{ has exactly } \varepsilon \text{ neighbors in } R\},\
B_{\varepsilon} = \{u \in B \setminus \{b_1\} \mid u \text{ has exactly } \varepsilon \text{ neighbors in } R\}.
```

A vertex a in $A \setminus \{a_1\}$ cannot have two neighbors x and y in R, for otherwise $\{a, a_1, x, y, b_1\}$ induces an F_1 . So $A = \{a_1\} \cup A_0 \cup A_1$. Likewise $B = \{b_1\} \cup B_0 \cup B_1$. Since any two vertices in R are A-comparable, some vertex x in R is complete to A_1 , and $R \setminus \{x\}$ is anticomplete to $A \setminus \{a_1\}$. Likewise, some vertex y in R is complete to B_1 , and $R \setminus \{y\}$ is anticomplete to $B \setminus \{b_1\}$. Suppose that x = y. Consider any $z \in R \setminus \{x\}$ (recall that $|R| \geq 2$). Then z is anticomplete to $(A \setminus \{a_1\}) \cup (B \setminus \{b_1\})$, so, by (1), we have p=q=2. If x is anticomplete to $\{a_2,b_2\}$, then G is in class \mathcal{C} (where $V(\overline{G})$ can be partitioned into two cliques $\{a_1,b_1\}$ and $R \cup \{a_2,b_2\}$). If xis not anticomplete to $\{a_2, b_2\}$, then \overline{G} is in class \mathcal{A} (where $\{a_1, b_1, a_2, b_2\}$ induces a 4-hole in \overline{G} , and $R \setminus \{x\}$ plays the role of the set "X", and x plays the role of the vertex "e"). Now suppose that we cannot choose x and y equal. So both A_1 and B_1 are not empty, and we may assume that a_2 is adjacent to x and not to y, and that b_2 is adjacent to y and not to x. If there is a vertex a_0 in A_0 , then $\{a_0, a_2, x, y, b_2\}$ induces an \overline{F}_1 . So $A_0 = \emptyset$. Likewise $B_0 = \emptyset$. If there is any vertex z in $R \setminus \{x, y\}$, then $\{x, y, z, a_2, b_2\}$ induces an \overline{F}_2 . So $R = \{x, y\}$. Thus G is in class \mathcal{C} (where $A \cup \{x\}$ and $B \cup \{y\}$ are two cliques that form a partition of V(G)).

Finally assume that R is a clique. Since any two vertices of R are A-comparable and B-comparable, there is at most one pair (i,j) such that $R_{i,j} \neq \emptyset$, and since a_1 and b_1 are complete to R, we may assume that if the pair (i,j) exists

```
then (i,j)=(2,2). Hence R=R_0\cup R_{2,2}. Let R^*=\{x\in R_0\mid x\text{ is complete to }A\cup B\}, R_A=\{x\in R_0\setminus R^*\mid x\text{ is complete to }A\}, R_B=\{x\in R_0\setminus R^*\mid x\text{ is complete to }B\}.
```

So $R = R^* \cup R_A \cup R_B \cup R_{2,2}$, and $A \cup R_A$ and $B \cup R_B$ are cliques. Since any two vertices in R are A-comparable and B-comparable, the bipartite subgraph of \overline{G} induced by $A \cup R_A \cup B \cup R_B$ is $2K_2$ -free. By the definition of R_B and $R_{2,2}$, every vertex in $R_B \cup R_{2,2}$ has a non-neighbor in A, and since vertices in R are A-comparable, there is a vertex a in A that is anticomplete (in G) to $R_B \cup R_{2,2}$. Likewise there is a vertex b in B that is anticomplete in G to $R_A \cup R_{2,2}$. (If $R_{2,2} \neq \emptyset$, then $a = a_2$ and $b = b_2$.) By Theorem 2 it follows that \overline{G} is in class \mathcal{B} (where the four stable sets are $A \cup R_A$, $B \cup R_B$, $R_{2,2}$ and R^* , and a,b play the role of x,y). This completes the proof of the theorem.

Property (b) of Theorem 1 implies that deciding whether a graph on n vertices and m edges is (wheel, antiwheel)-free can be done by brute force in time $O(n^7)$. So the problem is polynomially solvable. However, we can use property (c) of Theorem 1 to solve the problem in time O(n+m), as follows:

- Test whether G is a 5-hole or a 6-hole. This can be done in time O(n).
- Test whether G is a split graph. This can be done in time O(n+m) as proved in [6].
- Test whether G or \overline{G} is in $A \cup B \cup C$. This can be done in time O(n+m) as explained in Theorem 4 below.

If any of the test fails, then G is not wheel-free or not antiwheel-free.

Theorem 4. One can decide in time O(m+n) whether a graph G on n vertices and m edges satisfies the property that either G or \overline{G} is in $A \cup B \cup C$.

Proof. Roughly, the algorithm will find vertices of certain degrees and from these vertices construct a partition of V(G) as required in the definition of the classes. For all $i \in \{0, \ldots, n-1\}$ let D_i be the set of vertices of degree i.

First we test whether $G \in \mathcal{A}$. Note that in a graph in \mathcal{A} (with the same notation as in the definition of \mathcal{A}) the set of vertices of degree 2 is either $\{a,b\}$ or $\{a,b,e\}$, and in this second case, we have $|X| \in \{1,2\}$ and $|V(G)| \in \{6,7\}$. So we proceed as follows. Find the set D_2 of vertices of degree 2 in G. If either $|D_2| \notin \{2,3\}$, or $|D_2| = 3$ and $|V(G)| \notin \{6,7\}$, or $|D_2| = 2$ and the vertices in D_2 are not adjacent, then declare that G is not in \mathcal{A} . If $|D_2| = 3$ and $|V(G)| \in \{6,7\}$, then use brute force. If $|D_2| = 2$ and its vertices a,b are adjacent, then let c be the unique vertex in $N(a) \setminus \{b\}$, let d be the unique vertex in $N(b) \setminus \{a\}$, and let $X = N(c) \cap N(d)$. Check that X is a clique, that there is a unique vertex e in $V(G) \setminus (\{a,b,c,d\} \cup X)$, and that e is complete to X and not complete to $\{c,d\}$.

Determining D_2 , a, b, c, d, X, e and checking the properties can be done in time O(m+n) by scanning the adjacency lists.

Testing whether $\overline{G} \in \mathcal{A}$ can be done similarly, starting from the set D_{n-3} of vertices of degree n-3 (instead of D_2), and arguing similarly, with adjacency and non-adjacency swapped. (It is not necessary to build the complementary graph \overline{G} .) So this can also be done in time O(m+n) by scanning the adjacency lists.

Now we test whether $G \in \mathcal{B}$. We describe a graph in \mathcal{B} with the same notation as in the definition of \mathcal{B} and, for the bipartite graph induced by $X \cup Y$, with the same notation (the sets $X_1, \ldots, X_h, Y_1, \ldots, Y_h$) as in Theorem 2. Note that if h = 1, then x and y are universal vertices in $G \setminus W$. If $h \geq 2$, then $G \setminus W$ has no universal vertex but it has vertices of degree 1 (at least one in X_h and one in Y_h , actually $X_h \cup Y_h = D_1$), and they form a stable set, and they are all adjacent to either x or y. So we proceed as follows. Determine the set $W (= D_0)$ of isolated vertices in G. Determine the set U of universal vertices of $G \setminus W$ (so $U = D_{n-1-|W|}$). If $|U| \ge 2$, pick any two vertices $x, y \in U$; then if $V(G) \setminus (W \cup \{x, y\})$ is a stable set, declare that $G \in \mathcal{B}$, else declare that $G \notin \mathcal{B}$. If |U| = 1, declare that $G \notin \mathcal{B}$. Now suppose that $U = \emptyset$. Let D_1 be the set of vertices of degree 1. If either $|D_1| \leq 1$, or D_1 is not a stable set, or $N(D_1)$ does not consist of two adjacent vertices, declare that $G \notin \mathcal{B}$. Now suppose that $|D_1| \geq 2$, D_1 is a stable set, and $N(D_1)$ consists of two adjacent vertices x, y. Let $Z = N(x) \cap N(y)$, and $X = N(y) \setminus Z$ and $Y = N(x) \setminus Z$. Check whether $V(G) \setminus (W \cup Z \cup X \cup Y) = \emptyset$. Check whether X and Y are stable sets and whether $X \cup Y$ induces a P_5 -free bipartite graph (as explained after Theorem 2). Check whether Z is a stable set and is anticomplete to $V(G) \setminus \{x, y\}$. Determining D_1, x, y, Z, X, Y and checking the properties can be done in time O(m+n) by scanning the adjacency lists.

Testing whether $\overline{G} \in \mathcal{B}$ can be done similarly, starting from the set $W' = D_{n-1}$ of universal vertices (instead of W), the set $U' = D_{|W'|}$ of isolated vertices in $G \setminus W'$ (instead of U), and the set D_{n-2} of vertices that have exactly one nonneighbor (instead of D_1), and arguing similarly, with adjacency and non-adjacency swapped.

Finally we test whether $G \in \mathcal{C}$. We describe a graph in \mathcal{C} with the same notation as in the definition of \mathcal{C} , assuming witout loss of generality that $|Y| \leq |X|$. If |Y| = 2, then the graph either has at most five vertices (if $|X| \leq 3$) or has the same structure as a graph in class \mathcal{A} minus the vertex e (where the two vertices in Y play the role of a, b); this can be tested with a variant of the algorithm for class \mathcal{A} (just forgetting the instructions that deal with vertex e). Now suppose that $|Y| \geq 3$. Then there is a vertex in Y with no neighbor in X, and any such vertex has minimum degree in G, and every vertex of minimum degree in G is such a vertex (or is a vertex in X with no neighbor in Y, in case |X| = |Y|). So we proceed as follows. Let Y be a vertex of minimum degree in G. Let $Y = \{y\} \cup N(y)$ and $X = V(G) \setminus Y$. Check that X and Y are cliques, and that there are exactly two, non-incident, edges between them. Determining y, X, Y and checking the properties can be done in time O(m+n) by scanning the adjacency lists.

Testing whether $\overline{G} \in \mathcal{C}$ can be done similarly, starting from a vertex y of

maximum degree (instead of minimum) and arguing similarly, with adjacency and non-adjacency swapped. This completes the proof.

Acknowledgments. Author is partially supported by ANR project STINT under reference ANR-13-BS02-0007.

REFERENCES

- M. Chudnovsky, G. Cornuéjols, X. Liu, P. Seymour, K. Vušković: Recognizing Berge graphs. Combinatorica, 25 (2005), 143–186.
- 2. M. Chudnovsky, P. Seymour: *The three-in-a-tree problem.* Combinatorica, **30** (2010), 387–417.
- 3. E. DIOT, S. TAVENAS, N. TROTIGNON: *Detecting wheels*. Appl. Anal. Discrete Math., 8 (2014), 111–122.
- 4. S. FÖLDES, P. L. HAMMER: *Split graphs*. Congressus Numerantium, **XIX** (1977), 311–315.
- P. L. HAMMER, U. N. PELED, X. SUN: Difference graphs. Discrete Appl. Math., 28 (1990) 35–44.
- P. L. Hammer, B. Simeone: The splittance of a graph. Combinatorica, 1 (1981), 375–384.
- F. MAFFRAY, N. TROTIGNON: Algorithms for perfectly contractile graphs. SIAM J. Discrete Math., 19 (2005), 553–574.
- 8. N. V. R. Mahadev, U. N. Peled: *Threshold graphs and related topics*. Annals of Discrete Mathematics, **56**, Elsevier, Amsterdam, 1995.
- K. TRUEMPER: Alpha-balanced graphs and matrices and GF(3)-representability of matroids. J. Combin. Theory Ser. B, 32 (1982), 112–139.
- 10. K. Vušković: The world of hereditary graph classes viewed through Truemper configurations. Surveys in Combinatorics, London Mathematical Society Lecture Note Series, 409, Cambridge University Press, pages 265–325, 2013.

CNRS, Laboratoire G-SCOP, University of Grenoble

(Received April 10, 2015) (Revised September 9, 2015)

France

E-mail: frederic.maffray@grenoble-inp.fr