
Applicable Analysis and Discrete Mathematics
available online at http://pefmath.etf.rs

Appl. Anal. Discrete Math. 9 (2015), 357–366. doi:10.2298/AADM150930020M

GRAPHS WITH NO INDUCED WHEEL AND NO

INDUCED ANTIWHEEL

Frédéric Maffray

A wheel is a graph that consists of a chordless cycle of length at least 4

plus a vertex with at least three neighbors on the cycle. An antiwheel is

the complementary graph of a wheel. It was shown recently that detecting

induced wheels is an NP-complete problem. In contrast, it is shown here that

graphs that contain no wheel and no antiwheel have a very simple structure

and consequently can be recognized in polynomial time.

1. INTRODUCTION

Four families of graphs have repeatedly played important roles in structural
graph theory recently. They are called Truemper configurations as they were first
used by Truemper in several theorems [9]. These configurations are called pyra-

mids, prisms, thetas and wheels. We will not recall all the definitions, as we do
not need all of them here; see Vušković [10] for an extensive survey on Truemper
configurations and their important role in graph theory. It is interesting to know
the complexity of deciding whether a graph contains (as an induced subgraph) a
Truemper configuration of a certain type. The problem is polynomial for pyramids
[1]; indeed it is one of the main steps in the polynomial-time recognition algorithm
for perfect graphs [1]. It is also polynomial for thetas [2]. On the other hand, the
problem is NP-complete prisms [7].

Here we will deal with the fourth Truemper configuration, the wheel. A wheel

is a graph that consists of a chordless cycle of length at least 4 plus a vertex that
has at least three neighbors on the cycle. An antiwheel is the complementary graph
of a wheel. Diot, Tavenas and Trotignon [3] proved that it is also NP-complete
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to decide if a graph contains a wheel as an induced subgraph. They mention the
open question of characterizing the graphs that contain no wheel and no antiwheel.
We solve this question here by giving a complete description of the structure of
these graphs, from which it follows that they can be recognized in linear time.

We use the standard graph-theoretic terminology. We let Kn, Pn and Cn

respectively denote the complete graph, path and cycle on n vertices. The length

of a path or cycle is its number of edges. For a given graph F, we let nF denote the
graph with n components, all isomorphic to F. Given a family F of graphs, a graph
G is F-free if no induced subgraph of G is isomorphic to any member of F ; when
F has only one element F we say that G is F -free. Whenever we say that a graph
G contains a graph F, we mean that some induced subgraph of G is isomorphic to
F.

In a graph G, a k-hole is an induced cycle on k vertices. A hole is any k-hole
with k ≥ 4. A k-antihole is the complementary graph of a k-hole. The neighborhood
of a vertex x is denoted by NG(x) or N(x) if there is no ambiguity. For any set
A ⊆ V (G) and vertex x ∈ V (G), we let NA(x) denote the set NG(x) ∩ A. We say
that a vertex x is complete to a set S ⊆ V (G) \ {x} if x is adjacent to every vertex
in S, and that x is anticomplete to S if x has no neighbor in S. Given disjoint sets
S, T ⊆ V (G), we say that S is complete to T if every vertex in S is adjacent to every
vertex in T, and that S is anticomplete to T if no vertex in S has any neighbor in
T. We let G denote the complementary graph of G.

We define three classes of graphs A, B and C as follows (see Figure 1).

• Class A: A graph G is in class A if V (G) can be partitioned into two non-
empty sets X and {a, b, c, d, e} such that:

– {a, b, c, d} induces a hole with edges ab, bc, cd, da;

– X induces a clique and is complete to {c, d} and anticomplete to {a, b};

– e is complete to X, anticomplete to {a, b}, and has a non-neighbor
in {c, d}.

• Class B: A graph G is in class B if V (G) can be partitioned into four stable
sets X,Y, Z,W, with two special vertices x ∈ X and y ∈ Y, such that:

– |X | ≥ 2, |Y | ≥ 2, and X∪Y induces a connected P5-free bipartite graph;

– x is complete to Y, and y is complete to X ;

– Z is complete to {x, y} and anticomplete to (X ∪ Y ) \ {x, y};

– W is anticomplete to X ∪ Y ∪Z (so all vertices of W are isolated in G).

The structure of P5-free bipartite graphs is recalled in Section 2.

• Class C: A graph G is in class C if V (G) can be partitioned in two cliques
X and Y of size at least 2 such that the edges between X and Y form a
matching of size 2.
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A split graph [4] is any graph whose vertex-set can be partitioned into a clique
and a stable set. Note that the complementary graph of a split graph is a split
graph.

Class A Class B Class C

Figure 1.

Our main result is the following. Its proof is given in Section 3.

Theorem 1. The following three properties are equivalent :

(a) G is (wheel, antiwheel )-free.

(b) G contains no wheel and no antiwheel on at most seven vertices.

(c) G or G is either a 5-hole, a 6-hole, a split graph, or a member of A∪ B ∪ C.

2. P5-FREE BIPARTITE GRAPHS AND SPLIT GRAPHS

We recall the following simple characterization of P5-free bipartite graphs.

Theorem 2 (See [5] or [8, Section 2.4]). Let H be a connected bipartite graph,

where V (H) is partitioned into stable sets X and Y. The following conditions are

equivalent :

• H is P5-free;

• H is 2K2-free;

• The neighborhoods of any two vertices in X are comparable by inclusion

(equivalently, the same holds in Y );

• There is an integer h > 0 such that X can be partitioned into non-empty sets

X1, . . . , Xh and Y can be partitioned into non-empty sets Y1, . . . , Yh such that

for all i, j ∈ {1, . . . , h} a vertex in Xi is adjacent to a vertex in Yj if and only

if i+ j ≤ h+ 1.

Using the properties described in this theorem one can also decide in linear
time whether a bipartite graph is P5-free [5, 8].
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It follows from Theorem 2 that whenH is a P5-free connected bipartite graph,
with the same notation as in the theorem, then X contains a vertex that is complete
to Y (every vertex from X1 has this property), and similarly Y contains a vertex
that is complete to X (every vertex from Y1 has this property).

Földes and Hammer [4] gave the following characterization of split graphs.

Theorem 3 ([4]). A graph is split if and only if it is {2K2, C4, C5}-free.

3. THE PROOF

Proof of Theorem 1. Let F1 (resp. F2) be the wheel that consists of a 4-hole
plus a vertex adjacent to three (resp. four) vertices of the hole.

Clearly, property (a) of Theorem 1 implies property (b).

Let us prove that (c) implies (a). Assume that G satisfies property (c). If
G or G is a 5-hole or a 6-hole, then clearly it does not contain a wheel or an
antiwheel. If G is a split graph (and so G too is a split graph), it contains no hole
and consequently no wheel (and also no antiwheel). We may now assume that G
or G is in A ∪ B ∪ C. Actually we may assume that G is in A ∪ B ∪ C since being
(wheel, antiwheel)-free is a self-complementary property.

First we examine the presence of a wheel. If G ∈ A ∪ C, it contains only
one hole H, of length 4. If G ∈ B it may contain many holes, but they all have
four vertices, more precisely two vertices from X and two from Y. In all cases, it is
easy to see that whenever H is a hole in G, every vertex of G \H has at most two
neighbors in H. So no hole of G extends to a wheel, and so G is wheel-free.

Now we examine the presence of an antiwheel. Note that G contains no 5-
antihole (because in that case G is a 5-antihole, which we have already examined),
and that in any k-antihole with k ≥ 6 every vertex x has degree at least 3 and
N(x) is not a clique.
If G ∈ A, it is easy to see that every antihole H of G has length 4 and consists of
the vertices a and b plus two vertices u, v from X ∪ {e}; moreover, c and d have
three neighbors in H, while any vertex in V (G)\(V (H)∪{c, d}) is adjacent to both
u, v; it follows that H cannot extend to an antiwheel (F 1 or F 2) in G.
If G ∈ B, we claim that G contains no antihole at all. Indeed, G contains no 4-
antihole (= 2K2), by Theorem 2 and because there is no 2K2 containing a vertex
from Z. Moreover, if H is a k-antihole in G with k ≥ 6, then: clearly H contains
no vertex from W ; and H contains no vertex z ∈ Z (because NG(z) is a clique);
and so V (H) ⊆ X ∪Y, which is impossible because H must contain triangles. Thus
the claim that G contains no antihole is established, and consequently G contains
no antiwheel.
Finally, if G ∈ C, it is easy to see that every antihole H in G has length 4 and that
there is no vertex u in V (G) \V (H) such that V (H)∪ {u} induces an antihole (F 1

or F 2), so G contains no antiwheel.

Finally let us prove that (b) implies (c). Let G be a graph that contains no
wheel and no antiwheel on at most seven vertices.

First, suppose that G contains a 5-hole C. Note that V (C) also induces a
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5-hole in G. If there is any vertex x in V (G)\V (C), then x has either at least three
neighbors in C or three non-neighbors in C, and so V (C) ∪ {x} induces a wheel in
G or in G. Thus no such x exists, and G is a 5-hole.

Now suppose that G contains a 6-hole C, with vertices c1, . . . , c6 and edges
cici+1, with subscripts modulo 6. Pick any x in V (G) \V (C). Vertex x has at most
two neighbors in C, for otherwise V (C)∪{x} induces a wheel in G. It follows that,
up to symmetry, N(x) ∩ V (C) is equal either to {c1}, {c1, c2}, {c1, c5}, {c1, c4}
or ∅. In the first three cases {x, c1, c3, c4, c6} induces an F 1; in the last two cases
{x, c2, c3, c5, c6} induces an F 2. Thus no such x exists, and G is a 6-hole.

If G contains a 6-antihole, then the same argument as in the preceding para-
graph, applied to G, implies that G is a 6-antihole.

We assume henceforth that G contains no 5-hole (and consequently no 5-
antihole), no 6-hole and no 6-antihole. We may also assume that G is not a split
graph, for otherwise the theorem holds. It follows from Theorem 3 that G contains
either a 2K2, a C4 or a C5. Since G contains no C5, and up to self-complementation,
we may assume that G contains a 2K2. Let A,B be two disjoint subsets of V (G)
such that both A and B are cliques of size at least 2 and A is anticomplete to B.
There exists such a pair since we can let A and B be the two cliques of size 2 of a
2K2. Choose A and B such that |A ∪ B| is maximized. Let R = V (G) \ (A ∪ B).
We claim that:

(1)

For every vertex x in R, either :
• x is complete to A and has a neighbor in B, or
• x is complete to B and has a neighbor in A, or
• x has exactly one non-neighbor in A and exactly one non-neighbor in B.

Suppose that the third item does not hold. So, up to symmetry, x has two non-
neighbors a, a′ in A. If x has a non-neighbor b in B, then, picking any b′ ∈ B \ b,
we see that {x, a, a′, b, b′} induces an F 1 or F 2 (depending on the pair x, b′), a
contradiction. So x is complete to B. If x has no neighbor in A, then the pair
A,B ∪ {x} contradicts the choice of A,B. So x has a neighbor in A, and the first
item in (1) holds. This proves (1).

Let A = {a1, . . . , ap}, with p ≥ 2, and let B = {b1, . . . , bq}, with q ≥ 2. Define
the following subsets of R:
• R0 = {x ∈ R | x is complete to A or to B}.
• Ri,j = {x ∈ R | x is complete to (A ∪B) \ {ai, bj} and anticomplete to {ai, bj}},
for each (i, j) ∈ {1, . . . , p} × {1, . . . , q}.
Clearly these sets are pairwise disjoint, and by (1) we have R = R0 ∪

⋃
i,j Ri,j .

Say that two vertices x and y of R are A-comparable if one of the two sets
NA(x) and NA(y) contains the other; in the opposite case, say that x and y are
A-incomparable. Define the same with respect to B.

Suppose that there are two A-incomparable vertices x and y in R. Up to
relabeling, a1 is adjacent to x and not to y and a2 is adjacent to y and not to x.
Since each of x and y has a neighbor in B, there is a path P between x and y with
interior in B, and we may assume that P has no chord except possibly xy (if x, y
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are adjacent). Since B is a clique, the length ℓ of P is equal to 2 or 3. We may
assume that if ℓ = 2 then P = x-b1-y while if ℓ = 3 then P = x-b1-b2-y. Vertices x
and y are adjacent, for otherwise V (P ) ∪ {a1, a2} induces a 5-hole or a 6-hole.

(2) x and y are anticomplete to A \ {a1, a2}.

For suppose up to symmetry that x has a neighbor a in A\{a1, a2}. Then {a1, a2, x, y, a}
induces an F1 or F2. Thus (2) holds.

(3) No vertex of R is complete to {a1, a2}.

Suppose that some z in R is complete to {a1, a2}. So z /∈ {x, y}. Then z is an-
ticomplete to {x, y}, for otherwise {x, y, z, a1, a2} induces an F1 or F2. Then z is
not adjacent to b1, for otherwise either {x, y, z, b1, a1, a2} induces a 6-antihole (if
ℓ = 2) or {x, y, a2, z, b1} induces a 5-hole (if ℓ = 3). By (1) z has a neighbor b
in B; so b 6= b1. Then x is adjacent to b, for otherwise {x, a1, z, b, b1} induces a
5-hole, and y is adjacent to b, for otherwise {x, y, a2, z, b} induces a 5-hole; but
then {x, y, z, b, a1, a2} induces a 6-antihole. Thus (3) holds.

Suppose that we can choose P with ℓ = 3. Then {a1, a2} and {b1, b2} play
symmetric roles. By (1), (3) and its analogue for {b1, b2}, we have R = R1,1 ∪
R1,2 ∪R2,1 ∪R2,2. Note that x ∈ R2,2 and y ∈ R1,1. If p ≥ 3, then {x, y, a1, a2, a3}
induces an F2. So p = 2, and similarly q = 2. If there is any vertex u in R1,2, then
u is adjacent to x, for otherwise {u, b1, x, a1, a2} induces a 5-hole, and similarly u
is adjacent to y; but then {u, x, y, a1, a2} induces an F1. So R1,2 = ∅, and similarly
R2,1 = ∅. Therefore V (G) = {a1, a2, b1, b2} ∪ R1,1 ∪ R2,2. If some vertex u in
R1,1 is not adjacent to some vertex v in R2,2, then {u, a1, a2, v, b2, b1} induces a
6-hole. So R1,1 is complete to R2,2. If R1,1 contains two adjacent vertices u, v, then
{u, v, x, a1, a2} induces an F1. So R1,1 is a stable set, and similarly R2,2 is a stable
set. Thus G is in class C (where R1,1 ∪ {a1, b1} and R2,2 ∪ {a2, b2} are the two
cliques that form a partition of V (G) as in the definition of class C).

Therefore we may assume that ℓ = 2 and that there is no path P as above
with ℓ = 3, which means that x and y are B-comparable. We claim that:

(4) R = {x, y}.

For suppose that there is a vertex z in R\{x, y}. Suppose that z is anticomplete to
{a1, a2}. By (1), z is complete to B and has a neighbor a in A\{a1, a2}. By (2), a is
anticomplete to {x, y}. Then z is adjacent to x, for otherwise {x, a1, a, z, b1} induces
a 5-hole; and similarly z is adjacent to y. But then {x, y, z, a1, a2, a} induces a 6-
antihole. Therefore, by (3), z has exactly one neighbor in {a1, a2}. Up to symmetry,
assume that z is adjacent to a1 and not to a2. If z is adjacent to b1, then it is also
adjacent to y, for otherwise {z, a1, a2, y, b1} induces a 5-hole, and to x, for otherwise
{z, a1, x, b1, y} induces an F1; but then {x, y, a1, a2, z} induces an F1. So z is not
adjacent to b1, and so z ∈ R2,1. Then z is adjacent to y, for otherwise either
{z, a1, a2, y, b1, b2} or {z, a1, a2, y, b2} induces a hole (depending on the adjacency
between y and b2), and z is not adjacent to x for otherwise {x, y, a1, a2, z} induces
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an F1. Then b2 is adjacent to x, for otherwise {x, b1, b2, z, a1} induces a 5-hole, and
to y, for otherwise {y, b1, b2, z, x} induces an F1. But then {a1, z, b2, x, y} induces
an F1. Thus (4) holds.

If p ≥ 3, then, by (2) and (1), x and y are anticomplete to A \ {a1, a2}
and complete to B. It follows that G is in class C (where the two cliques A and
B ∪ {x, y} form a partition of V (G) as in the definition of class C). Now suppose
that p = 2. Since x and y are B-comparable, we may assume, up to symmetry, that
NB(x) ⊆ NB(y). If B contains two vertices b, b′ that are not adjacent to x, then
{x, a1, a2, b, b′} induces an F 1. So B has at most one non-neighbor of x. If there is
such a vertex b, then G is in class A (where {a1, a2, x, y} induces a 4-hole, the set
B \ {b} plays the role of “X” and b plays the role of “e” in the definition of class
A). If there is no such vertex, then G is in class C (where V (G) is partitioned into
the two cliques A and B ∪ {x, y}).

Therefore we may assume that any two vertices in R are A-comparable and
B-comparable. By (1), every vertex of R has a neighbor in A, so some vertex of A
is complete to R. Likewise, some vertex of B is complete to R. So we may assume
that a1 and b1 are complete to R. If R is neither a clique nor a stable set, there are
three vertices x, y, z in R that induce a subgraph with one or two edges, and then
{a1, b1, x, y, z} induces an F1 or F2, a contradiction. Therefore R is either a clique
or a stable set.

Suppose that R is not a clique. So R is a stable set of size at least 2. For
ε ∈ {0, 1}, let

Aε = {u ∈ A \ {a1} | u has exactly ε neighbors in R},

Bε = {u ∈ B \ {b1} | u has exactly ε neighbors in R}.

A vertex a in A \ {a1} cannot have two neighbors x and y in R, for otherwise
{a, a1, x, y, b1} induces an F1. So A = {a1}∪A0∪A1. Likewise B = {b1}∪B0∪B1.
Since any two vertices in R are A-comparable, some vertex x in R is complete to
A1, and R\{x} is anticomplete to A\{a1}. Likewise, some vertex y in R is complete
to B1, and R \ {y} is anticomplete to B \ {b1}. Suppose that x = y. Consider any
z ∈ R \ {x} (recall that |R| ≥ 2). Then z is anticomplete to (A \ {a1})∪ (B \ {b1}),
so, by (1), we have p = q = 2. If x is anticomplete to {a2, b2}, then G is in class
C (where V (G) can be partitioned into two cliques {a1, b1} and R ∪ {a2, b2}). If x
is not anticomplete to {a2, b2}, then G is in class A (where {a1, b1, a2, b2} induces
a 4-hole in G, and R \ {x} plays the role of the set “X”, and x plays the role of
the vertex “e”). Now suppose that we cannot choose x and y equal. So both A1

and B1 are not empty, and we may assume that a2 is adjacent to x and not to
y, and that b2 is adjacent to y and not to x. If there is a vertex a0 in A0, then
{a0, a2, x, y, b2} induces an F 1. So A0 = ∅. Likewise B0 = ∅. If there is any vertex z
in R \ {x, y}, then {x, y, z, a2, b2} induces an F 2. So R = {x, y}. Thus G is in class
C (where A ∪ {x} and B ∪ {y} are two cliques that form a partition of V (G)).

Finally assume that R is a clique. Since any two vertices of R are A-
comparable and B-comparable, there is at most one pair (i, j) such that Ri,j 6= ∅,
and since a1 and b1 are complete to R, we may assume that if the pair (i, j) exists
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then (i, j) = (2, 2). Hence R = R0 ∪R2,2. Let

R∗ = {x ∈ R0 | x is complete to A ∪B},

RA = {x ∈ R0 \R
∗ | x is complete to A},

RB = {x ∈ R0 \R
∗ | x is complete to B}.

So R = R∗ ∪ RA ∪ RB ∪ R2,2, and A ∪ RA and B ∪ RB are cliques. Since any
two vertices in R are A-comparable and B-comparable, the bipartite subgraph of
G induced by A ∪ RA ∪ B ∪ RB is 2K2-free. By the definition of RB and R2,2,
every vertex in RB ∪ R2,2 has a non-neighbor in A, and since vertices in R are
A-comparable, there is a vertex a in A that is anticomplete (in G) to RB ∪ R2,2.
Likewise there is a vertex b in B that is anticomplete in G to RA∪R2,2. (If R2,2 6= ∅,
then a = a2 and b = b2.) By Theorem 2 it follows that G is in class B (where the
four stable sets are A ∪ RA, B ∪ RB, R2,2 and R∗, and a, b play the role of x, y).
This completes the proof of the theorem. �

Property (b) of Theorem 1 implies that deciding whether a graph on n vertices
and m edges is (wheel, antiwheel)-free can be done by brute force in time O(n7).
So the problem is polynomially solvable. However, we can use property (c) of
Theorem 1 to solve the problem in time O(n+m), as follows:

• Test whether G is a 5-hole or a 6-hole. This can be done in time O(n).

• Test whether G is a split graph. This can be done in time O(n+m) as proved
in [6].

• Test whether G or G is in A ∪ B ∪ C. This can be done in time O(n+m) as
explained in Theorem 4 below.

If any of the test fails, then G is not wheel-free or not antiwheel-free.

Theorem 4. One can decide in time O(m + n) whether a graph G on n vertices

and m edges satisfies the property that either G or G is in A ∪ B ∪ C.

Proof. Roughly, the algorithm will find vertices of certain degrees and from these
vertices construct a partition of V (G) as required in the definition of the classes.
For all i ∈ {0, . . . , n− 1} let Di be the set of vertices of degree i.

First we test whether G ∈ A. Note that in a graph in A (with the same
notation as in the definition of A) the set of vertices of degree 2 is either {a, b}
or {a, b, e}, and in this second case, we have |X | ∈ {1, 2} and |V (G)| ∈ {6, 7}.
So we proceed as follows. Find the set D2 of vertices of degree 2 in G. If either
|D2| /∈ {2, 3}, or |D2| = 3 and |V (G)| /∈ {6, 7}, or |D2| = 2 and the vertices in D2

are not adjacent, then declare that G is not in A. If |D2| = 3 and |V (G)| ∈ {6, 7},
then use brute force. If |D2| = 2 and its vertices a, b are adjacent, then let c be
the unique vertex in N(a) \ {b}, let d be the unique vertex in N(b) \ {a}, and let
X = N(c) ∩ N(d). Check that X is a clique, that there is a unique vertex e in
V (G) \ ({a, b, c, d} ∪ X), and that e is complete to X and not complete to {c, d}.
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Determining D2, a, b, c, d, X, e and checking the properties can be done in time
O(m+ n) by scanning the adjacency lists.

Testing whether G ∈ A can be done similarly, starting from the set Dn−3 of
vertices of degree n− 3 (instead of D2), and arguing similarly, with adjacency and
non-adjacency swapped. (It is not necessary to build the complementary graph G.)
So this can also be done in time O(m+ n) by scanning the adjacency lists.

Now we test whether G ∈ B.We describe a graph in B with the same notation
as in the definition of B and, for the bipartite graph induced byX∪Y, with the same
notation (the sets X1, . . . , Xh, Y1, . . . , Yh) as in Theorem 2. Note that if h = 1,
then x and y are universal vertices in G \W. If h ≥ 2, then G \W has no universal
vertex but it has vertices of degree 1 (at least one in Xh and one in Yh, actually
Xh ∪ Yh = D1), and they form a stable set, and they are all adjacent to either x or
y. So we proceed as follows. Determine the set W (= D0) of isolated vertices in G.
Determine the set U of universal vertices of G \W (so U = Dn−1−|W |). If |U | ≥ 2,
pick any two vertices x, y ∈ U ; then if V (G) \ (W ∪ {x, y}) is a stable set, declare
that G ∈ B, else declare that G /∈ B. If |U | = 1, declare that G /∈ B. Now suppose
that U = ∅. Let D1 be the set of vertices of degree 1. If either |D1| ≤ 1, or D1 is not
a stable set, or N(D1) does not consist of two adjacent vertices, declare that G /∈ B.
Now suppose that |D1| ≥ 2, D1 is a stable set, and N(D1) consists of two adjacent
vertices x, y. Let Z = N(x) ∩N(y), and X = N(y) \ Z and Y = N(x) \ Z. Check
whether V (G) \ (W ∪Z ∪X ∪ Y ) = ∅. Check whether X and Y are stable sets and
whether X ∪ Y induces a P5-free bipartite graph (as explained after Theorem 2).
Check whether Z is a stable set and is anticomplete to V (G) \ {x, y}. Determining
D1, x, y, Z, X, Y and checking the properties can be done in time O(m + n) by
scanning the adjacency lists.

Testing whether G ∈ B can be done similarly, starting from the set W ′ =
Dn−1 of universal vertices (instead of W ), the set U ′ = D|W ′| of isolated vertices
in G \W ′ (instead of U), and the set Dn−2 of vertices that have exactly one non-
neighbor (instead of D1), and arguing similarly, with adjacency and non-adjacency
swapped.

Finally we test whether G ∈ C. We describe a graph in C with the same
notation as in the definition of C, assuming witout loss of generality that |Y | ≤ |X |.
If |Y | = 2, then the graph either has at most five vertices (if |X | ≤ 3) or has the
same structure as a graph in class A minus the vertex e (where the two vertices
in Y play the role of a, b); this can be tested with a variant of the algorithm for
class A (just forgetting the instructions that deal with vertex e). Now suppose
that |Y | ≥ 3. Then there is a vertex in Y with no neighbor in X, and any such
vertex has minimum degree in G, and every vertex of minimum degree in G is such
a vertex (or is a vertex in X with no neighbor in Y, in case |X | = |Y |). So we
proceed as follows. Let y be a vertex of minimum degree in G. Let Y = {y}∪N(y)
and X = V (G) \ Y. Check that X and Y are cliques, and that there are exactly
two, non-incident, edges between them. Determining y, X, Y and checking the
properties can be done in time O(m+ n) by scanning the adjacency lists.

Testing whether G ∈ C can be done similarly, starting from a vertex y of
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maximum degree (instead of minimum) and arguing similarly, with adjacency and
non-adjacency swapped. This completes the proof.
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